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using a force sensor

Measuring Z
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Z-accuracy requirements are becoming more stringent

Brittle dielectrics
Aluminum capped copper
Circuitry under pads

When probing at temperatures
other than ambient, almost
every part of the pin to pad
interface moves thermally

Probe-card
Interface
Ring carrier
Z-stage?

Position {(microns)

Exposed :
Copper Cracked Die
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Probe card Z movement following a chuck
temperature change




Thermal Effects on Z stage
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Z-stage vertical movement following a chuck temperature change
from 30°C to 150°C

Overall Z Accuracy




External encoder ensures correct stage
position
How does one

take a
measurement
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Probe card Z-position over temperature

The movement of the Probe card and
the Interface need to be monitored

Modeling the probe card
and compensated for

behavior reduces the

frequency with which
“‘updates” need to be done,
thus improving throughput

Probe Card Update - Z

Model Responge - FCUZ
Temperature from Sy=em denification Data
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Are these results correct?




Lets turn to space age technology for a
solution

What we are really interested in is to have

consistency in over travel across lots of wafers at
all temperatures.

How do we validate the effectiveness of the
dynamic Compensatlon almed at achlevmg this?

We need a tool that can measure
In situ at any temperature within

the operating range of the prober
and that does so in a scenario that

closely mimics probing conditions.

Picture courtesy of JR3




Enter the 6 axis robotic Force sensor

JR3I SENSORS WITH EXTERNAL ELECTRONICS

DIAMETER THICKNESS AVAILABLE LOAD RATINGS
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User Iinterface for Force sensor
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8 kHz sampling rate
Load rating 30 Lb

Accuracy V4 percent
of rated load

Needle polishing cycle with
multiple Z-strokes
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Custom built EG user interface for force sensor




Establishing the Force/Displacement relation

Custom built EG user interface

“Move z-stage up in
increments and record
the force readings.

Typically we do not
want to calibrate the
measurement tool with
the tool to be measured.
Due to the linear
encoder, mounted
directly to the chuck this
is a valid calibration
method.

Regress the data to
create slope and
intercept

Ratio is ~390 g/mil

Now we can measure force and translate it into displacement




Long term results using EG SORTmanager™

Measurement
across 138
wafers with a
total of
~10452 die
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Force Sensor Analysis

Prober: prir-14 -
Run: 2007-05-10 18:04:14 =
Exclude:
Die Wafer:
o Off
Tips: ®0n
#®Data

Show
Each |
Wafer:

Force Sensor Test Results for prbr-14

Test Started: 2007-05-10 18:04:14
EGC Revision: Lightning 2.7.0-EV29-G
Wafers: 138

Comments

2007-05-11 01:04:24 MNEW PC ALIGNMENT

Overall Distribution of Z Force at Test Complete

T
500
Gram-Force

Overall Distribution of Z Force - Maximum

hlean: 1014.755
Std. Dev.: 58.58165
Cazes: 10452

hean: 1062 56534
Std. Dev.: 63.382678
Cases: 10435
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/Z-force on card at Test Start

Overall distribution of Z-force at “Test Start”

Mean: 1010.94799
Std. Dev.: 47.627304
Cases: 10246
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Calibration curve from SORTmanager™ database

Force Per UnitZ

Yo=-T4123.406 + 39.034435 X RZ =05934194

£
E
=
o
e
]
bl

al0 T T T T T
19150 19190 18200 19210 19220 19250 19240
Z Height (microns)

Force Distance ratio is 994 grams per mil or 39 grams per micron




Overtravel variation

Overall Distribution of Calculated Overtravel at Test Complete
Calculstion bazed on Force Per Unit £

10

Mean: 53.874504
Sid. Dew: 1 .B33325
Cases X337

Ouvertravel (microns)

Over-travel variation across 3 wafers ~ 7 p.
Tested using a 600 pin multi-die Vertical Probe Card




Graphical representation of Z-force by location

Calculated Overtravel
Mean Across 3 \Wafers

Calculated Overtravel
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Min and Maximum Z-force on card by die location

ZForce by Test Sequence
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Chuck temperature change from 80C to 25C




Impact force by die location

Z Impact by Test Sequence
(Max £ Farce - TC £ Farce)
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Z-force range for each die

Z-force on this location
consistently higher,
indicating contamination

trapped under wafer
Z Force by Die Sequence
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Conclusions

A force sensor is a valid measurement tool for measuring Z-
accuracy

Due to the fact that this measurement method replicates a true
probing scenario, it will produce results similar to what can be
expected in a production environment.

Prober Z-stages grow significantly when chuck temperature
increases. This can be successfully detected and compensated
for using an external linear encoder.

Force sensor can measure accuracy of pins on wafer as well as
accuracy of pins on any cleaning or continuity material.

Due to the high sampling rate of the measurement tool,
interesting observations of the impact forces and impact force
reduction measures can be made.
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