Lou Molinari ESA Corporation/Probe Solutions

The Thermal Frontier High Temp Probing System Solutions and Analysis

June 6 to 9, 2010 San Diego, CA USA

The Thermal Frontier -Goals-

- Agree on the needs/concerns
- Understanding the Environment
- Introducing an Environmental solution
- Justify the Final Solution

ESA Corp & Probe Solutions

- ESA Corporation:
 - Provides Engineering Science Analysis solutions, with expertise in Research, Product Development and Business Management
 - Instituted Research and Make Product (RAMP™) methodology for product development/deployment
- Probe Solutions, division of ESA Corporation:
 - Specializes in system enhancements for the semiconductor test industry.

Needs/Concerns

- Thermal probing is needed as a cost measure for final product throughput and reliability ... so it is here to stay
- Probing solutions vary across many technologies. (Blade, Epoxy, Vertical, Single, Multi-Dut, etc)
- Probe solutions need to support a variety of tester platforms and configurations

So to create a solution that will support this variety of requirements;

VERY CUSTOM = COSTLY (\$\$\$) for customer

Cost Model for User

Thermal Probing Cost Model (TPCM)

TPCM = PC Manuf Cost + Operating Cost

20th 2-0-1-0 ANNIVERSARY

Cost Model for User

- Probe Card Design and Manufacturing Cost
 - Solutions have been developed to minimize effects
 - Resulting in Custom solutions and Fixed cost
- Operating Cost (Loss of Revenue)
 - Dwell Time between wafers / lots
 - Variable depending on problems and acceptance in general problems.
 - "Type of the limes range from 3 minutes between wafers to minute between lot changes

Cost Model for User

Result of TPCM:

- Manufacturing Cost of present day solutions, to user, have little opportunity for reduction or change
- Operating Cost today are dependent on the evaluations performed and the users willingness to take risk to decrease down time
- Down Time = Results in loss of revenue and throughput (\$\$\$\$)

Yet many solutions to date have only solved the individual component to a systematic problem

We have ignored the ENVIRONMENT!

Case Study

Design an airplane to go fast

- What are in the input conditions?
- What are the expectations ?
- If we do not properly understand all the environmental conditions .. We get

- Will the plane fly?
- Will it go faster?

- Does it meet the environmental conditions?
 - As currently Understood/Defined
- Maybe YES, but is it the best solution, or are the additions just "band-aids/overdesigning" to the real problem, the environment

 Yet if we understood all the requirements, or better controlled /understand the environment while clearly defining the expectations then the original solution could have been adequate

Probing Application

 Apply similar thinking in understanding the Probing Environment

 Stop developing solutions that are not addressing the real issue ... the environment

Environmental Probe Card Control Unit (PCECU)

 A solution that addresses the environmental conditions, while addressing cost and operational factors of the end user

20th 2 · 0 · 1 · 0
ANNIVERSARY

Modeling Analysis

- The focus of this analysis is to understand and demonstrate the impacts due to the environment
- This presentation will not cover the secondary mechanical solutions developed to date
 - But what drove them to be developed

SW Test 2010 – Thermal Probing

Modeling Analysis

Modeling Analysis

Determine PCECU Effectiveness

• Environment Conditions:

- Hot Chuck and PCECU heater activated simultaneously
 - Probe card temperature to monitored (stability = Δ > 0.5 deg. C)
 - 120 deg. C = Hot chuck temp
 - Tray lip is insulated
 - PCECU Heater thermostat is set to 105 deg. C
- Consistent with normal ATE process (wafer re-load process)
 - Hot chuck is removed from proximity for a period of 60 sec
 - Probe card temperature is monitored at 4 locations
 - Temperature readings are taken at 30 & 60 sec intervals
- Hot chuck is moved back to probing position
 - Probe card temperature to monitored (stability = Δ > 0.5 deg. C)

Model Properties

Convection and radiation boundary conditions applied to orange faces.

Tray Lip (red) is kept perfectly insulated.

Modeling Results

Modeling Conclusions

- Probe Card stabilizes at 109 deg C, both modes
- PCECU reaches stability with 60% improvement
- No significant delta seen with a 60 sec reload

Model demonstrates effectiveness of PCECU

Environment Implementation

- Environment Conditions:
 - Hot Chuck and PCECU heater activated simultaneously
 - Probe card temperature to monitored (stability = Δ > 0.5 deg. C)
 - 120 deg. C = Hot chuck temp
 - Support lip not insulated and conducts to a temperature of 20 deg. C
 - PCECU Heater thermostat is set to 90 deg. C
 - Consistent with normal ATE process (wafer re-load process)
 - Hot chuck is removed from proximity for a period of 60 sec
 - Probe card temperature is monitored at 4 locations
 - Temperature readings are taken at 30 & 60 sec intervals
 - Hot chuck is moved back to probing position
 - Probe card temperature to monitored (stability = Δ > 0.5 deg. C)

Environment Properties

Convection and radiation boundary conditions applied to orange faces.

Tray Lip (red) not insulated and conducts to an ambient temperature of 20 °C

Environment Results

Probe Card Thermal Profile

Environment Conclusions

- Probe Card stabilizes at 94 deg C, both modes
- PCECU reaches stability with 50% improvement
- No significant delta seen with a 60 sec reload

20th 2 · 0 · 1 · 0
ANNIVERSARY

Conclusion

- PCECU thermal value is set once card has been profiled for thermal stability
- PCECU reduces the amount of variation, downtime, and customization in a Thermal Probe Cost Model (TPCM) = Reduced Cost (\$\$\$)
- PCECU is common solution across the prober, thus minimizing custom solutions to the probe card = Reduced Cost (\$\$\$)

Understand the Environmental Conditions and you can

Thank you

Mr. Martin Martinez
Engineering Science Analysis Corp.
6105 S. Ash, Suite A3
Tempe, AZ 85283
480-460-3727

http://www.ESACORP.com

Mr. Lou Molinari Probe Solutions 743 Goldenrod St. Phoenix, AZ 85048 480-460-3727

http://www.ProbeSolutions.com