IIEEE SW Test Workshop

Semiconductor Wafer Test Workshop

Thomas Logue Seagate - Ireland

Thanh Q Le Seagate - US

Reducing the Cost of Test on **Gold & Copper Pads**

June 6 to 9, 2010 San Diego, CA USA

Overview

- Problem Definition
- Current Status
- Improvement Results
- Conclusions / Recommendations
- Acknowledgments / References

Problem Definition

- Historically we used Beryllium Copper (BeCu) probe material for testing on our Gold (Au) and Copper (Cu) pads due to its low contact resistance capability.
- With decreasing pad pitch (45uM) and thus more complex card designs, the probes were naturally becoming smaller and less stable. This carried a cost in terms of -
 - Reduced probe card lifetime
 - Increased operator maintenance
 - Resulting in increased spend.

Card Failure Categories

Cause & Effect – Card Costs

Material Selection & Comparison

- Material Selection priorities:
 - Extend card lifetime
 - Sort Yield
 - Sort Retest Level

*Courtesy of Advanced Probing Systems Inc.

• This involved taking a close look at various on-line cleaning solutions, different probe materials and controlling the amount of needle aligning.

Material Selection & Comparison

PROPERTY	Tungsten	Tungsten	Beryllium	Paliney 7 [®]	NewTek
		Rhenium	Copper		VerTek
Electrical and Thermal Properties:					
Bulk Resistivity at 20°C (mohm-cm)	5.59 to 5.86	9.15 to 9.65	6.10 to 7.93	30.9 to 34.9	55.1 to 58.2
Melting Point (°C)	3410	3410	870 to 980	1015	1300 to 1350
Coeff. of Lin. Exp. (0 to 500 °C) (mm/mm ×1/°C)	4.45 ×10⁻ ⁶	4.45 ×10 ⁻⁶	17.8 ×10 ⁻⁶	13.5 ×10 ⁻⁶	7.6 ×10⁻ ⁶
Material Properties:					
Elastic Modulus (GPa)	394.5±6.1	395.7±6.4	131.5±5.5	121.2±4.9	179 to 181
Tensile Strength (GPa)	2.65 to 2.90	2.90 to 3.36	1.28 to 1.31	0.90 to 1.25	1.30 to 1.55
Vicker's Hardness (100*ជ្រាល់២៩នុទ្ធ of Adv (kg/mm²)	ancedProbi	n g45 y s ateanns	ln2038 to 384	320 to 357	382 to 438

Material Selection / Comparison Chart

• Initially we experimented with probe materials and continued to use our Probe Polish 99 (ITS) cleaning material.

– NewTek

-WRe

 The long term trial was started using 3 WRe probe cards and Probe Polish 99 (ITS) cleaning Material.

Initial Findings on Cu Pads

- 1. Probe card incoming specifications reduced to <+-5 uM (no/limited metal memory).
- 2. Sort yield was same or slightly improved.
- 3. Sort retest levels reduced by 7%.
- 4. The number of wafers between analyser maintenance increased from 1 wafer to >4 wafers.
- 5. Test time reduced by 4.5%.
- 6. The average contact resistance did not exceed 7.3 ohms (four wire to the pad.)
- 7. Average TDs increased to >5MTDs, (several cards have >7MTDs) an increase of >300%.

Current Production Card Lifetime

Initial Findings on Au Pads

- 1. Probe card incoming specifications reduced to <+-5uM (no/limited metal memory).
- 2. We had to change to Probe Scrub (3um Grit, ITS) to stabilise contact resistance.
- 3. The latter initially dramatically reduced the first tier, (7mil tip length), therefore we removed this on a specific area of the layout and we increased it to 14mil.
- 4. Sort yield was same or slightly improved.
- 5. Sort retest levels improved by 8%.
- 6. The number of wafers between analyser maintenance increased from 1 wafer to >4 wafers.
- 7. Test time reduced by 10%.
- 8. The average contact resistance did not exceed 7.3 ohms (four wire to the pad.)
- 9. Average TDs increase to >3MTDs an increase of 100%.

1st 8.5MTDs WRe Card

June 6 to 9, 2010

IEEE SW Test Workshop

Probe Card Costs (\$/QTR)

Conclusions

- A Great Results All Round
 - Cost of ownership
 - Rebuild/repair reduction
 - Vendor cost reduction
 - Alignment & Planarity specification
 - Resource reduction
 - Prober & Analyser Efficiency Improvements
 - We can maintain a probe wire diameter of 8mils on our new products.

Acknowledgements

- Jerry Broz, Ph.D., International Test Solutions
- Thanh Q Le, Mark Ferry, Seagate Technology Inc
- Guy Trolley, Keyence UK Ltd

References

Advanced Probing Systems, Inc.

