IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Rob Marcelis
Salland Engineering Europe BV

Adaptive test on wafer level

focus on: test-time reduction (TTR)

June 6 to 9, 2010 San Diego, CA USA

Introduction

- What is Adaptive test?
 - Modify test content/flow based on results
- Examples of adaptive test
 - Dynamic change test limits (DPAT)
 - Reduce amount of tests
 - Make test plan based on PCM data
 - Smart Sample Probe
- ITRS (Salland Engineering, contributes)
 - International Technology Roadmap for Semiconductors

Why do we test in the 1st place?

- What if the wafer-fab would produce 100% perfect product?
 - No need for testing at wafer level.
 - Most of us would not have a job!
- Lucky for us; there is enough process variation during wafer fabrication!
 - This makes wafer test mandatory.

Cost of test

- Cost of test still grows
 - More complexity in the devices
 - More pins, higher density
 - More expensive ATE
- Challenge to reduce cost without concessions to the quality
 - Invest in Dynamic Test-cell Controller
 - Gain all advantages (not just TTR)

Suitable device types

- Not all devices are suitable for adaptive test
 - Test coverage needed at all times (Automotive)
 - New product or new technology
 - (not enough data available yet)
 - Effort is higher then profit
 - Low volume production

All about balance

Test

- When do you recognize the picture?
- In total 80 boxes
 - 1st; 5 boxes; 94% reduction
 - 2nd; 9 boxes; 89 % reduction
 - 3rd; 13 boxes; 84% reduction

Objectives / Goals

- Reduce test-time
 - Have at least 20% TTR
- No concessions towards quality
 - Less then 20 PPM difference in yield
- Recipe controlled;
 - All adaptive TTR instructions are stored in a TTR-Recipe
- Useable over wide range of products
 - Mixed signal & analog
- Traceability of how each die is tested
 - Special identifiers (adaptive test-flow pass bins)
 - Know values used for switching

Methods

- Detect redundant tests/data
 - In order to create reduced test-flow's
- Have multiple decision criteria (recipe-content)
 - Validation towards the lot
 - Tests to monitor (used for switch decisions)
 - Area's over the wafer
 - Watch-dog test
- Real-time analysis and decisions
 - Activate the "switch"
 - Real Time data analysis (test-data validation)

Preparation

- Redundancy analysis required (on historical data)
 - Results will vary over the wafer surface
 - (geographical connected)
- Reduce number of tests
 - Which are suitable?
- Test-flow creation
 - Multiple test flows
- Correlation analysis
 - Remaining tests should correlate with full flow

Redundancy

- When is a test redundant?
 - When it does not contribute by it self, to the end result.
- Why are there redundant tests in the first place?
 - Creating a test-program is to cover all specified parameters.
 - for new product it is not clear yet, how tests are "connected" (and could end-up as being "redundant")
- How to detect redundant tests?
 - Use a redundancy analysis software tool
 - Output is: a list with "skip-candidates"

Test-flow creation

- Create reduced test-program (s) "TTR Test Flows"
 - Use skip candidates list
- Not all tests can just be skipped
 - Waiting loops (for the DUT to stabilize)
 - Set-up information (to bring the DUT in a certain condition)
 - Essential test coverage ("must be" test, used also for switch indicator)
 - Watchdog test
- Correlate each test in the "TTR Flow" to the Full-Flow
 - To make sure no quality impact
 - Should bring same reading regardless the "Flow" (TTR or Full)

Watchdog test

- Monitor the stability of the product & process
- Should be a representable test
 - To validate the measured values (good contact)
 - Real time SPC
- Secure the quality of process
 - Watch for "Trend"
 - Guard band value's set by historical data
- Can never be switched off!
- When out of control;
 - Return to full test flow

Adaptive Test Flow

TTR
Recipe

Test

Presented at IEEE 2009 International Test Conference

Post-Test
Analysis &
Dispositioning

Adaptive Test Data Flow

ETEST Fab data PTAD RT A/O **Wafer Probe** PTAD

"RT A/O" stands for "Real-Time Analysis & Optimization"

> "PTAD" is "Post-Test Analysis & Dispositioning"

- Fab data
- Design data
- Business data
- Customer specs

Database & **Automated Data Analysis**

Burn-in

PTAD

RT A/O

Final Test

hop

(including post-test statistical analysis, dynamic routings and feedforward data) **Card/System Test** PTAD

RT A/O

Field Operation

16

June 6 to 9, 2010

RT A/O

Adaptive TTR Flow @ DTC **R&R TTR Preparation** Multiple **SEDana** Original Flow TTR "proof" test-program **TTR** Skip test candidates Test-Historic test Data Analyzer Testprogram program recipe TTR execution Start lot; Test **Switch** Dynamic Adaptive TTR Selected Analysis on results DTC activate test-switch Criteria samples Met? June 6 to 9, 2010 **IEEE SW Test Workshop** 17

Switch criteria, recipe based

- Validation towards the lot
 - Test 1 (or more) wafers to detect if the lot is "good"
 - Run full-flow and monitor:
 - Overall wafer yield
 - Not containing more then X bin-Y
- Tests to monitor on:
 - Cpk, Cp, mean/median, sigma on parametric level
 - Yield on bin level
- Area's on the wafer with corresponding sample die
- Watch-dog test

TTR-Control map

How does it work in practice

Screen video

Results

Validation wafers (lot level)

TTR candidate (wafer level)

Multi-layers TTR

Watchdog (die level)

By trend module

Type Name	Test time saving	Remark
Type A	15 %	yield increase ~0.5% at WT with full detected by FT
Type B	16 %	yield increase ~0.6% at WT with full detected by FT
Type C	26 %	yield increase ~0.7% at WT with full detected by FT

Summary / Conclusion

- Customers targets are not fully reached
 - Average yield increase 0.6% (compared to 100% testing of same wafer)
 - final-test catches the "Slip-through" parts
 - Average test time reduction 19%
- Adaptive TTR is definitely a solution to reduce cost of test.
- Maturity of the product
 - More data to be used for analysis
 - Different TTR test-flows over time.
 - The better you understand the "connection" between tests, more reduction can be offered
 - Automatic test program optimization
- Next to adaptive test time reduction, also additional tests can be activated for higher test coverage.

Prediction

• Within the next 2 years; adaptive TTR will be used for at least 30% of all semiconductor test.

Follow-On Work

- Improvements
 - Analysis algorithms
 - Automatic recipe generation tool
 - Extend functionality to PCM-data processing
 - Extend supported platforms
 - Reporting functionality
- Benefit overview IDM/Fab-less/OSAT

Special thanks

- ITRS adaptive test committee
- Thijs Haarhuis SE (screen movie)

20th 2 · 0 · 1 · 0 ANNIVERSARY

