IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Jeff Arasmith
Cascade Microtech

The Effects of Probe Impedance on RF KGD Measurements

June 6 to 9, 2010 San Diego, CA USA

Agenda

- Introduction
- Objective
 - The impact if increased inductance (impedance)
- Methods / Materials / Procedures
 - Impact of small inductance to impedance
 - Membrane emulation of different probe types
 - HFSS modeling
- Summary
- Follow-On Work

WLCSP Demands KGD

WLCSP is the fastest growing package type

- "Wafer level chip-scale packages... became the IC industry's most popular package type in 2009.
 - Yannou, Jean-Marc. "WLCSP quietly edges into #1 position" <u>3D</u>
 Packaging, Feb 2010: 16-17
- KGD testing
 - Die test is Final Test
- Wider pitch probes
 - Package technology can be adapted for die level testing
 - Wider pitch (400-500 μm)
 - More compliance
 - Longer, more inductive probes

Specs – Bandwidth, Inductance

- Datasheets consistently spec bandwidth and contact resistance
- Longer, more inductive probes have sufficient bandwidth for consumer RF applications in the 1-2.5 GHz range
 - Typical socket bandwidth specs for -1 dB
 - 6.8, 11.1, 11.5, 17.17 GHz
 - Typical inductance specs
 - 1.71, 1.27, 1.1, 1.15 nH
- From a Pyramid Probe perspective, that's a lot of inductance

What's the Big Deal With Small Inductances?

- Consider inductance in terms of reactance
 - This is the frequency dependant part of impedance
- Impedance is $Z_o = R + 1/j\omega C + j\omega L$
 - The inductive reactance, $X_L = \omega L$
 - WLAN and Bluetooth are approximately 2.5 GHz
 - A little inductance would be 0.1 nH

$$-X_{L} = \omega L$$

$$-X_1 = 2\pi^*2.5 \text{ GHz* } 0.1 \text{ nH}$$

$$-X_1 = 1.6 \Omega$$

• 1 nH would be ten times as much, 16 Ω

What's the Big Deal with Small Inductances?

Why do such small inductances make a difference?

Contact resistance (typical values)

1.5 – 2 ohms	Broz, J., Rincon, R. (1998). Probe Needle Wear and Contact Resistance, SWTW, p 8
0.8 – 1.2 ohms	Strom, J., (1998). Multi-Tier Probe Cards and Contact Resistance, SWTW, p 7
0.5 ohms (Upper Spec Limit)	Kister, J., (2007). Electrical Contact Resistance - The Key Parameter in Probe Card Performance, SWTW

• $X_1 = 1.6 \Omega$ for a 0.1 nH inductor

 For a small inductance, you have an impedance change or discontinuity equivalent to double or triple the acceptable contact resistance.

• $X_L = 16 \Omega$ for a 1 nH inductor

 For a large inductance, the discontinuity could be 10x the contact resistance or 1/3 of the 50 ohm trace impedance

Inductance Comparison

- Create a Pyramid Probe membrane to investigate the affect of an inductive contact
 - Target WLCSP devices
 - Use 400 μm pitch
 - Typical inductances for three contact types
 - Standard Pyramid Probe geometries, 0.04 nH
 - Spring pin, 0.68 nH
 - MEMS vertical, 1.05 nH

Membrane Design – Pyramid Probe

Pyramid Probe

Transmission line	50 Ω
Inductance from end of transmission	n/a
line to DUT	
Inductance from GND plane to DUT	0.04 nH

Membrane Design – Pyramid Probe

Pyramid Probe

- Two metal layers
 - Ground plane is blue; mesh and solid
 - Signal layer is red

Membrane Design Spring Pin Emulation

• Spring Pin

Transmission line	50 Ω
Inductance from end of transmission	0.68 nH
line to DUT	
Inductance from GND plane to DUT	0.68 nH

Determining Spring Pin Self-Inductance

- Datasheet
 - GSG pattern at 400 μm pitch
 - Loop inductance of 1.02 nH

Three inductors with the same value

 Loop inductance is a single inductor in series with a pair in parallel

$$L_{total} = L + (L*L)/2L$$
 $L_{total} = L + L/2$
 $1.02 \text{ nH} = 3L/2$
 $L = 0.68 \text{ nH}$

Membrane Design MEMS Vertical Emulation

MEMs Vertical

Transmission line	50 Ω
Inductance from end of transmission	1.05 nH
line to DUT	
Inductance from GND plane to DUT	1.05 nH

Modeling the Membrane Design

- HFSS™ model with 4 RF ports
 - HFSS = High Frequency Structural Simulator
 - Insertion loss; S₂₁
 - Crosstalk; $S_{13} S_{14} S_{42}$

Simulation Results – Pyramid Probe

Transmission line	50 Ω
Inductances	0.04 nH, GND
Bandwidth (simulated)	-1 dB is >10 GHz
Crosstalk (simulated)	-51 to -52 dB at 2.5 GHz

Simulation - MEMs Vertical Emulation

Spec	Simulation	Datasheet
Transmission line	50 Ω	
Inductances		1.05 nH
Bandwidth (-1 dB)	3.35 GHz	2.8 GHz
Bandwidth (-3 dB)	>10 GHz	6-10 GHz
Crosstalk (simulated)	-39 to 41 dB at 2.5 GHz	

Crosstalk Comparison

Simulation	Pyramid Probe	MEMS Vertical Emulation
Inductances	0.04 nH	1.05 nH
Crosstalk (2.5 GHz)	-51 to -52 dB	-39 to -41 dB

- The frequency of operation for consumer RF devices in WLCSP often around 2.5 GHz
- There is a correlation between reduced inductance and improved crosstalk
 - 10 dB better isolation at 2.5 GHz

Crosstalk – dB to mV

Decibel review

- Decibels normally refer to power
 - When considering voltages, use
 V(dB)= 20log(V/V₀)
 - Each -10 dB is a reduction in the voltage by square root of 10, which is 3.162

0 dB	1 V
-10 dB	0.316 V
-20 dB	0.100 V
-30 dB	0.032 V
-40 dB	0.010 V
-50 dB	0.003 V

Crosstalk - dB to mV

- In the simulations, there is an improvement in isolation from -40 dB to -50 dB
 - What's the big deal? Those are both a lot of isolation
- A -40 dB crosstalk system would put 10 mV on the victim for every 1 V on the aggressor
- A -50 dB crosstalk system would put 3.2 mV on the victim for every 1 V on the aggressor
 - That's a better than a 3x improvement is crosstalk!
 - At 1.8 V, that's 18 vs. 5.7
 - At 3.3 V, that's 33 mV vs. 10.4
- This is enough to push a marginal part over the limit, causing false failures and lower yield!

Summary

- Look beyond bandwidth for RF WLCSP
 - Impedance/reactance
 - Crosstalk
 - Noise margin

Simulation	Pyramid Probe	MEMS Vertical
Inductances	0.04 nH	1.05 nH
Bandwidth (-1 dB)	>10 GHz	3.35 GHz
Bandwidth (-3 dB)	>10 GHz	>10 GHz
Crosstalk (2.5 GHz)	-51 to -52 dB	-39 to -41 dB
X _L at 2.5 GHz	0.6 Ω	16 Ω

Further Work

- Simulate the third design
- Measure all three configurations on the completed membrane
 - Refine the model to more closely match the measurements

Mutual Inductance Rule of Thumb

- When can you ignore mutual inductance?
- Rule of thumb
 - If the spacing between two conductor segments is farther apart than their length, their partial mutual inductance is less than 10% of the partial self-inductance of either one and can often be ignored.
 - Signal Integrity: Simplified by Eric Bogatin
- Apply the inverse
 - For a given pitch, mutual inductance cannot be ignored if the conductors are shorter than the pitch.
- Mutual inductance IS crosstalk

Acknowledgments

 Special thanks to Mike Fredd, RF Product Applications Manager, for model creation and HFSS simulations

