IEEE SW Test Workshop Semiconductor Wafer Test Workshop

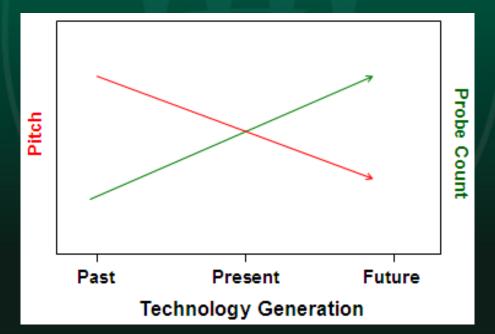
SWTW V-V-V-V

Anil Kaza Intel Corporation

Metrology and Probe Repair challenges with tighter pitch probe cards

June 6 to 9, 2010 San Diego, CA USA

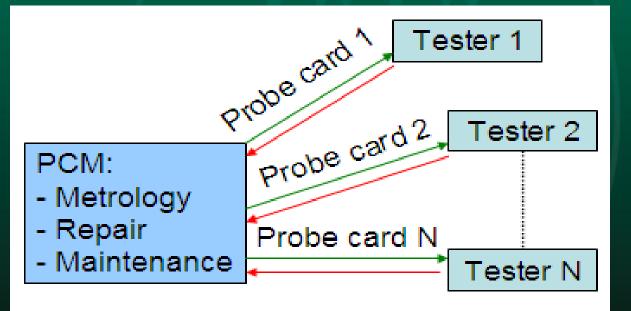
Overview


- Current trends with technology generation
- Intel PCM
 - Work Flow
 - How it is different
- Probe card metrology challenges
- Probe repair challenges
- Industry Collaboration
- Summary

Pitch and Probe Count

- Pitch continues to shrink and probe count continues to increase with each generation

 - Trend continues in foreseeable future


• Metrology, repair and maintenance challenges

June 6 to 9, 2010

Intel PCM

- Unique and unlike any other sort floor
 - Several probe cards and multiple testers

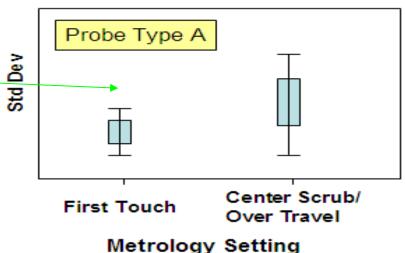
PCM activities critical to running of sort floor

- New challenges need to be addressed ahead of time
- Impact to SIU availability, product sorting

Metrology Test Development

Optical Algorithm is the most challenging

- Needs to work on new/different probe technologies
 - Probe types, materials, surface finish, shapes and sizes
- Ability to recognize and distinguish probes at tighter and tighter pitches
- Repeatable and Robust throughout lifetime
 - Meet repeatability and reproducibility criteria
- Ability to measure Z ht of features on probe tips
- Efficiency and throughput
 - Probe count increases



Optical Data Analysis

Different probe types need different settings for best optical metrology results

Data for probe type A (vertical type) indicates less variation with "First Touch" setting

Probe type B gives more meaningful data with "Center Scrub" or "Over Travel" setting

Current optical test process has 2 passes/scans always

Glass Plate

No OT/Free Hanging position

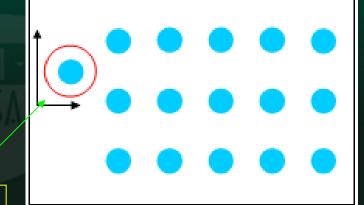
Glass Plate

OT position

June 6 to 9, 2010

Metrology Improvements

- Optical test routine needs to be configurable
 - Currently it is always 2 pass routine
 - Option for either ONE pass only or 2 passes depending on probe type
 - Software/Hardware changes
- Prefer standard optical algorithms in industry working on different probe types
- Test throughput is also important
 - Increasing probe counts and tighter pitches



Probe Card Repair Challenges

Probe Repair and Maintenance

- More and more difficult with tighter pitches and increasing probe counts
- New difficult layouts not helping either
- Impact of probe repair challenge
 - Significantly affects SIU availability
 - Repair process throughput
 - Increased overall sort cost
 - Affects product sorting
 - Ergonomic considerations

No reference points/probes to adjust this probe in X or Y direction

Current Status

- Adjustment performed manually
- Procedure
 - Run optical test on metrology tool
 - Adjust probes under microscope
 - Use adjacent probes as reference for adjustment
 - Run optical test again to verify adjustment
 - Go back and forth between metrology and probe adjustment (multiple times)-tedious process
 - Metrology tool not used for adjustment because of ergonomic concerns
 - No height adjustable stage for different operators

Going Forward

- Hit a brick-wall with current procedure, setup and tools
- Almost impossible to repair next generation tighter pitch probes efficiently

June 6 to 9, 2010

Problem Resolution

- Radical change in current procedure needed
 to break the brick-wall
 - Tools/apparatus
 - Procedures

• Currently attacking the different aspects of the problem

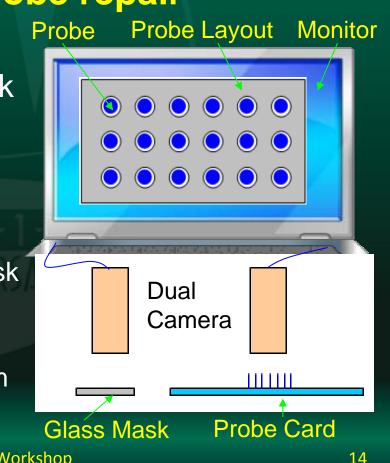
- Still in early development and proof of concept

Problem Solution/Future Vision

- Improvement/Changes in different areas
 - Real time verification of probe adjustment
 - Helps in throughput
 - Good qualitative assessment before metrology
 - Overlay

Semi-automated process for adjusting probes

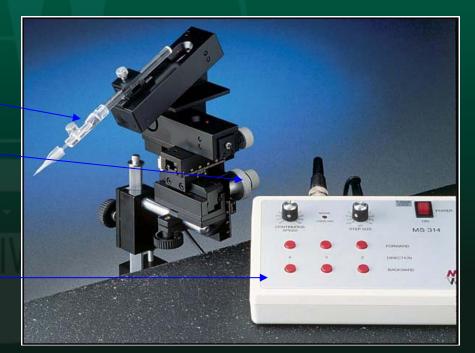
- Important as pitch \checkmark and probe count \uparrow
- Micro-manipulators
- Micro-tools/tweezers for interacting with probes
 - Different shapes depending on the purpose



Overlay

- Super impose the probe array and the layout
 - Use a monitor display for overlay
- Real time feedback for probe repair

2 options explored


- Dual camera with glass mask
 - Glass mask under 1 camera
 - Overlay on the monitor
 - Proof of concept works
- Digital electronic overlay
 - No need for multiple glass mask maintenance
 - Challenge with image sync movement (X and Y) and zoom

Micromanipulator

- Example of a motorized micromanipulator
- Attach different end (needle) shapes
- Desired Features
 - Mechanical pencil holder
 - Manual movements
 - Control Box
 - Micron level movement in X, Y and Z

Picture taken from Warner Instruments

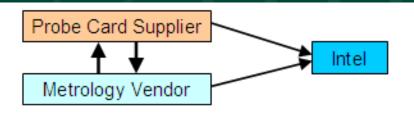
Micro-tweezers

Micro-gripper example

- Ability to grab a probe
- Control box for fine adjustments
- Most challenging task

Picture taken from Warner Instruments

 Can control the opening and separation between the tweezer ends
 Getting the right grip and angle is critical


Tweezers shaped ends

June 6 to 9, 2010

Industry Collaboration

- Integration of new probe card supplier or metrology vendor needs to be smooth
 - Prefer suppliers/vendors to engage proactively
 - Metrology challenges need to be addressed ahead of implementation at Intel

- Next generation probe repair station
 - Functionality, throughput and ergonomics
- Call out to industry for other repair ideas
- Interaction with industry to develop and make the probe repair station happen (at Intel)

June 6 to 9, 2010

Summary

- Challenges need to be addressed due to continuous pitch reduction and increasing probe count
 - Metrology
 - Probe repair and maintenance
 - Development work started with proof of concept demos for repair station

 Need industry collaboration for solutions and possible new ideas

June 6 to 9, 2010