IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Matt Losey

Yohannes Desta Melvin Khoo Lakshmikanth Namburi Georg Aigeldinger

Touchdown Technologies

Low-Force MEMS Probe Solution for Full Wafer Single Touch Test

June 6 to 9, 2010 San Diego, CA USA

Towards 1TD Memory Test

- The challenge of Single-touch test
 - # of I/O channels and resource sharing
 - # of power modules
 - Wiring density limits in the probecard PCB
 - Wiring density limits in the probecard MLC
 - Signal Integrity at High Frequency-
 - More signals in less space

TDT 300mm 1 TD

But what about the probecard mechanics?

For a MEMS probe with 5 gF /pin, pin count at 100,000: <u>Force = 1100 lbs!</u>

Contents

- Case studies to illustrate likely probecounts for 1TD
 - How many probes for a 1TD DDR3 PC?
- Probecard architecture and elements that enable probe counts
 - What is the expected probe density?
 - Is this even possible?
- Examine the mechanics of high probe count:
 - Simulate the probecard deflection based on the tester and probe force
 - Is the deflection within the compliance of the probe?
 - Can we reduce the force of the MEMS?

Probecounts for 1 TD Memory

Current generation probecards

- 3TD to 6TD DUT pattern
- Space surrounding each die available for routing
- Probecounts < 30,000</p>

• 1 TD for same DUT, resource sharing

- 60 to 80 probes /die small changes
- Die size shrinking- 800 to 1600 die / wafer
- 50,000 to 100,000 probes

4TD DDR3, 220 DUT, 300 mm 15,000 probes

	"Typical die"	"Small die"	"Small die"-Flash	
	DDR3 2Gb	DDR3 1Gb	Flash BIST	
Die Size Y (mm)	8	5.7	4.6	
# Probes/die	65	80	65	
Pitch	70um SLOC	60um SLOC	83um DLOC	
Dies/wafer	800	1400	1900	
1TD Probes/wafer	53,000	109,000	44,000	
Resource sharing	up to X4	up to X6	BIST	
#/mm ²	0.8	1.68	1.63	

1 TD Probe/Contact density required = $1.7 / mm^2$

Probecard Architecture and Density

Single piece ceramic for MEMS

- density limited by probe pitch
- No boundaries to constrain resource sharing
- Need space for components (Bypass caps, isolation resistors)

Pattern density on MLC surface

- Limited by shrinkage tolerance of MLC
- Wiring density <u>inside</u> MLC
- Interposer density

0

- PCB wiring density
 - Stiffener and mechanical support
 - Preserve planarity with 500 kg of load

Case study: 1 TD, 109,000 probes

- Smaller dies leave less room for routing
- 1400 dies requires ~110,000 Probes
- Resource sharing (DRV X8) reduces channel count requirements
 - Majority of probes are PWR/GND
 - 34k I/O reduces to 10k
 - Less density required in PCB
 - What about MLC Wiring <u>Density?</u>

5.7mm

	"Typical die"	"Small die"	"Small die"-Flash	
	DDR3 2Gb	DDR3 1Gb	Flash BIST	
Die Size Y (mm)	8	5.7	4.6	
# Probes/die	65	80	65	
Pitch	70um SLOC	60um SLOC	83um DLOC	
Dies/wafer	800	1400	1900	
1TD Probes/wafer	53,000	109,000	44,000	
Resource sharing	up to X4	up to X6	BIST	
#/mm²	0.8	1.68	1.63	
			Slide 6	

Torsion Probe Design

- More efficient energy storage for better dimensions
 - "Novel Method to Store Spring Energy in Probes," S. Ismail, SWTW 2008
- Pitch down to 50 um
- Probe density more than 5 / mm²

MLC Wiring Density

X8 resource sharing layout feasibility 0

- 80 connections MEMS side reduced to 60 tester side
- Internal Via pitch to 0.4mm (8 / mm²)
- Surface pad pitch to 0.7mm (2 / mm²)
 - Restricted by shrinkage tolerance.
 - LTCC advantage
 - : 0.13% Shrinkage tolerance vs 0.21% for HTCC

Probecard Architecture and Density

110,000 probes requires 1.7 / mm²

Torsion Probe MEMS

 \mathbf{O}

•

0

- 50um pitch capable: $> 5 / mm^2$
- No boundaries to constrain resource sharing
- Pattern density on MLC surface
 - LTCC enables <u>2 / mm²</u>
- Wiring density inside MLC
 - Routing studies show feasibility to <u>4 /mm²</u>

Interposer density

- 25mil pitch available: 2.5 / mm²
- PCB wiring density
- Stiffener and mechanical support?

Slide 9

FEA Simulated Probecard Probecard planarity under load

- lacksquare
 - Model includes Stiffener, PCB, Interposer, STF, Probehead
 - MEMS probes simplified as uniformly distributed force
 - No other system deflection included (prober chuck)

Mechanical Performance

Probecard retreat at overdrive

- Limits actual overdrive to probes
- See Large Array Probing Session 5, SWTW 2008
- "Electrical Planarity Characterization of High Parallelism Probe Cards," J. Caldwell, SWTW 2008
- Restrict to 20% of Probe's nominal overdrive

Probecard deformation at overdrive

- Requires larger operational range of the probe's overdrive
- Restrict to <30% of Probe's nominal overdrive

• <u>Factors</u>

- Tester interface mechanical supports
 - Current generation tester vs next
- Probe count
 - Up to 100,000
- Stiffener design- restrictions to meet thermal requirements
- Probe force
 - Typical probe force?

1TD Probecard designs will be challenged by existing tester platforms

MEMS Probe designs

3 Common Styles of MEMS probes:

- Mechanical Design of MEMS Probes for Wafer Test, C.
 Folk, SWTW 2008
- Cantilever.
 - Long probe (2mm), but wide (60um) for stress control.
 - Short scrub
 - Moderate force (4 gF)
- Dual-beam cantilever
 - Short probe (1.1mm).
 - Moderate to high force (5 to 6 gF)
- Torsional probe
 - Long probe (2mm), but narrow (35um)
 - Good scrubbing action with low force
 - How low can the force go?

MEMS Probe design constraints

- To achieve low-force, must balance:
 - Scrub pressure required for good contact,
 - Scrub length and scrub depth,
 - Maximum stress and probe material limits
 - Operating overdrive range

OD

- As Probe length 🖖 , Scrub length 🛧
- Height of probe: Clearance from tip to bar

 $SL \sim \frac{OD}{M} \cdot h$

Scrub length increases for taller post

Torsional Force and Spring

Scrub pressure

Need optimal scrub pressure

0

4.01

- Scrub Pressure = Probe Force / Contact Area
- Minimize pad damage (<700 MPa)
- Achieve robust electrical contact
- Necessary to reduce tip size with reduced force
 - Contact area also determined by probe style
 - Torsion probe decreases contact area
 - \rightarrow Enables lower force

			Contact	Contact	Scrub
Probe	Force	Tip size	Area	Fraction	Pressure
Cantilever	4 gF	10 um	67 um ²	67%	600 MPa
Cantilever-LF	2.0 gF	10 um	67 um ²	67%	290 Mpa
Torsion	2.5 gF	20 um	50 um ²	20%	500 MPa
Torsion-LF	2.0 gF	15 um	38 um ²	20%	520 MPa

Cantilever probe →Uses more tip area

Force vs Probe deflection

Force deflection curves generated with ANSYS

- Young's modulus
 Ni 200GPa
- Dimensions from
 SWTW

MEMS Probe force in the range 2 gF to 6 gF

Results: Probecard Deformation

Factors

- Common Tester- current gen
- 1" thick SST Stiffener
- Open-style stiffener for rapid thermal soak

Results

- Probecard deformation is a global planarity change (bow)
- Deformation exceeds 20um if MEMS probe force > 2gF
- Difficult for 1TD Probecards unless MEMS force is low

Slide 17

Results: Probecard Deformation

Factors

- Next Gen Testers
- 1 piece, 1" thick SST Stiffener
- Open style stiffener for rapid thermal soak

Results

- Acceptable deformation for all conditions
- However, common probers limited to 200 kg, so still need low-force probe
 - "Highest Parallel Test for DRAM," M. Huebner SWTW 2009

Interface design impact

- Larger stiffener span on older test interfaces greatly impacts resulting probecard deformation
 - Next Generation Testers and interfaces with reduced span, provide better structural support for probecard deformation
 - 1 TD Test will require more than just resource sharing
 - Need lower force probes and/or better interface support
 - Higher load probers
 - Balance between thermal performance and structural support

1TD Summary

- 1TD Requires up to 1.7 / mm² probe / contact density
- MEMS Probes, MLC pattern and routing density,
 Interposer densities are more than sufficient
- Mechanical performance dependant on:
 - Tester interface span
 - Probe force
 - Prober force limits

Summary

- 1 TD Probecards will require 50k to 100k probes
- Resource sharing will provide acceptable wiring densities on MLC, in MLC, Interposer, PCB
- However, mechanical deformation of the probecard under load will be an issue, unless:
 - The MEMS probe force is reduced to 2 gF
 - A next generation tester interface is used
- Even with a solid tester-interface design, prober chuck limits (450 lbs) necessitate lower force probes
- TdT's Low-force MEMS Torsion probe provides appropriate scrub pressure and size at low force

Acknowledgments

- Special thanks to
 - TdT Mechanical and Engineering design groups
 - TdT Process Integration group

June 6 to 9, 2010

IEEE SW Test Workshop