IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Ryan Satrom, Jason Mroczkowski
Multitest | ECT Interface Products

High Frequency Solutions for Wafer Level Package Test

June 9, 2010 San Diego, CA USA

Drive Toward Final Test at Wafer Level

- Wafer Level Packaging Offers Low Cost, High Frequency solution
 - Eliminates second (package) test
 - Increased package pitch allows Pogo® pin architectures
 - Improved electrical performance compared to traditional packaging
- Test Interface
 - Often performance limiter for tests at high frequency
- High-Frequency Testing at Wafer Level Can Be Challenging
 - Successful solutions require signal integrity optimization
 - Optimization must include full test interface
 - Test hardware can be very costly

Pogo® is a registered trademark of Everett Charles Technologies

New High Frequency WLP Solution

- High-frequency Pogo Pin Solution Addresses Challenge
 - PCB design guidelines for optimized signal integrity
 - Correct Pogo Pin for each specific application
 - Cost-effective
- Turnkey Solution Specific to High-Speed WLP Test Market
 - Design
 - Simulation
 - Fabrication
 - Assembly

Agenda

- Simulation-Measurement Correlation
 - Both PCB and contactor
 - Ensures maximum simulation accuracy
- Frequency-Based PCB Design Guidelines
 - Provides rules based on frequency
 - Avoids unnecessary overdesign and additional costs
- Hardware Selector Tool
 - Ensures performance specifications are met
 - Results based on application-specific variables
- Example Application

Simulation-Measurement Correlation

- Simulation Proven Through Extensive Characterization
 - Correlates simulation to measurement
 - Test hardware fabricated using Multitest manufacturing processes
 - Includes PCBs, contactors, and PCB/contactor interactions
 - Ensures simulation model accuracy

Contactor

RF Characterization PCB

Correlation

PCB

- **Microstrip traces**
- 1", 4", 6"
- Nelco 4000-13/SI

Contactor

- **MER040**
- 0.4mm pitch
- G-S-G Configuration

MEASUREMENT SIMULATION

System Correlation

- **Stripline Trace to BTM080 Contactor**
 - Includes via transition from PCB to contactor
- **Good Correlation out to 20GHz**

MEASUREMENT SIMULATION

Agenda

- Simulation-Measurement Correlation
 - Both PCB and contactor
 - Ensures maximum simulation accuracy
- Frequency-Based PCB Design Guidelines
 - Provides rules based on frequency
 - Avoids unnecessary overdesign and additional costs
- Hardware Selector Tool
 - Ensures performance specifications are met
 - Results based on application-specific variables
- Example Application

PCB Design Guidelines

Design Rule Considerations

- Typically derived from ideal environment
- Often do not relate to actual performance
- Rules valid below 500 MHz do not apply above 1 GHz

Design Rules Improved Through Simulation

- Matched to application frequency
- Ensures performance meets application requirements
- Minimizes cost

Examples of Optimized Rules:

- Connector footprints, stub drilling, ground via optimization (shown)
- Relay/component footprints, trace spacing, component locations, etc.

PCB Design Guidelines – Connector Footprint

- **Datasheet Specification:**
 - Bandwidth = 18.0 GHz
- **Simulation:**
 - Top microstrip -1dB: 1.2 GHz (Standard); 2.9 GHz (Optimized)
 - Bottom microstrip -1dB: 1.9 GHz (Standard); 6.2 GHz (Optimized)
- **Optimized Footprints Now Used as Design Standard**

PCB Design Guidelines – Stub Drilling

Stubs

- Create undesired noise in signal path
- Creates signal reflections that limit bandwidth

Stub Drilling

- Removes undesired stubs from signal paths
- Becomes increasingly important as frequencies increase

PCB Design Guidelines – Stub Drilling

- Stub Drilling Rule of Thumb:
 - Stub length must be less than ¼-wavelength of max frequency
- Simulation Results:
 - Stub drill required well below ¼-wavelength frequency
 - Required in GHz range
 - Much less dependent of signal layer than ¼-wave formula

Backdrill Recommendations										
	Stub Len	½-λ	Bandwidth							
LYR	(mil)	Equation	(-1dB)							
Lyr03	234	6.5 GHz	1.9 GHz							
Lyr11	167	9.1 GHz	2.3 GHz							
Lyr22	83	18.2 GHz	2.4 GHz							
Lyr30	17	89.1 GHz	2.3 GHz							

PCB Design Guidelines – Ground Via

- Ground Via Proximity Rule of Thumb:
 - No standard design rules for ground via location
- Simulation Results:
 - Ground via location have significant impact on performance
 - Design rules created based on frequency

PCB Design Guidelines – Summary

- Connector Manufacturer Specifications are not Accurate
- Quarter-Wavelength Stub Drill Approximation Insufficient
- Design Rules Require 3D Simulation
 - Accounts for all necessary variables:
 - PCB Thickness
 - Signal Layer
 - Ground Via Proximity
 - Stub Length

Agenda

- Simulation-Measurement Correlation
 - Both PCB and contactor
 - Ensures maximum simulation accuracy
- Frequency-Based PCB Design Guidelines
 - Provides rules based on frequency
 - Avoids unnecessary overdesign and additional costs
- Hardware Selector Tool
 - Ensures performance specifications are met
 - Results based on application-specific variables
- Example Application

PCB Material & Contactor Selection

- Factors impacting High Frequency Hardware Selection
 - PCB material
 - Trace topology
 - Trace length
 - Device pitch
 - Signaling type single-ended or differential
 - Ground-signal configuration G-S, G-S-G, G-S-S-G
- Multitest Hardware Selection Tool
 - Accounts for all relevant variables

PCB Selection Parameters

- Trace Topology
 - Stripline (Internal), Microstrip (External)
- Trace Length
 - 2", 4", 8", 12", 16"

Performance Matrix MT CONFIDENTIAL

								Insertion Loss			
								_[S12		
Pitch 💌	GND ▼	Trace 💌	Length	•	PCB [•	Probe	•	-1dB	-3dB	
0.5mm	GS	Stripline	02in		N4000-1	13	Btm050		2.9	7.0	
0.5mm	GS	Stripline	04in		N4000-1	13	Btm050		1.5	5.0	
0.5mm	GS	Stripline	08in		N4000-1	13	Btm050		0.6	2.7	
0.5mm	GS	Stripline	12in		N4000-1	13	Btm050		0.3	1.7	
0.5mm	GS	Stripline	16in		N4000-1	13	Btm050		0.2	1.2	
0.5mm	GS	uStrip	02in		N4000-1	13	Btm050		3.8	8.4	
0.5mm	GS	uStrip	04in		N4000-1	13	Btm050		2.3	6.4	
0.5mm	GS	uStrip	08in		N4000-1	13	Btm050		1.0	3.9	
0.5mm	GS	uStrip	12in		N4000-1	13	Btm050		0.6	2.6	
0.5mm	GS	uStrip	16in		N4000-1	13	Btm050		0.4	1.9	

Contactor Selection Parameters

Pitch

- 0.3mm, 0.4mm, 0.5mm
- As pitch increases, impedance increases

Ground Configuration

- Signal Type
 - Single-ended (G-S, G-S-G) one signal trace
 - Differential (G-S-S-G) two signal traces
- Number of adjacent grounds
 - G-S, G-S-G
 - As number of grounds increases, impedance decreases

Agenda

- Simulation-Measurement Correlation
 - Both PCB and contactor
 - Ensures maximum simulation accuracy
- Frequency-Based PCB Design Guidelines
 - Provides rules based on frequency
 - Avoids unnecessary overdesign and additional costs
- Hardware Selector Tool
 - Ensures performance specifications are met
 - Results based on application-specific variables
- Example Application

Application Example

Example

- 48 QFN, 0.5 mm pitch, 7x7 mm
- Application: Gigabit Ethernet Controller
- 2.5 Gbit/s Differential PCI-express
 - Requires 3.75 GHz bandwidth (3rd harmonic)

- Determine connector type
- Determine if stub drill is required
- Select optimal PCB material
- Select optimal Pogo pin for contactor

Application Example – Connector Type

- Requires 3.75 GHz bandwidth
- Connector choice
 - Surface mount, right-angle, top-launch SMA connector
 - Allows for backdrill
 - Minimizes loss without use of high-cost connector

Connector Type	Loss @ 3.75GHz	Bandwidth (-1dB)		
High-Cost Surface SMA	0.1dB	15.0 GHz		
Med-Cost Surface SMA	0.1dB	11.1 GHz		
Thru-Hole SMA	1.2dB	2.9 GHz		

Application Example – Stub Drill

- Stub Drill Not Necessary at DUT or at Connector
- Performance Stays Within Loss Budget (-3dB) Without Stub Drill
- Recommendation
 - Use high-aspect ratio drilling at DUT
 - Eliminates the need for sequential lamination

Application Example – PCB Material

- Majority of Loss Due to PCB Trace
- Recommendation Nelco 4000-13
 - Good high-speed material
 - Meets performance requirements without expense of exotic material

PCB Material	Loss @ 3.75GHz				
FR4	2.8dB				
Nelco 4000-13	2.1dB				
Rogers 4003	1.6dB				

Application Example – PCB & Contactor

- ApplicationSpecifications
 - 0.5mm
 - GSSG (Differential)
 - Stripline
 - 8" PCB Trace
- Nelco 4000-13
- MER050 is best solution
 - System Bandwidth(-3dB) is greaterthan 3.75GHz

Performance Matrix									
	CONFIDENTIAL								

								[Insertion Loss				
											12		
	Pitch	GND	¥	Trace	•	Length	-	PCB		Probe	•	-1dB	-3dB
mm		GS		Striplin	ie	02in		N4000-	-13	Btm050		2.9	7.0
nm		GS		Striplin	ne	04in		N4000-	-13	Btm050		1.5	5.0
mm		GS		Striplin	ne	08in		N4000-	-13	Btm050		0.6	2.7
	0.5mm	GS		Striplin	ne	12in		N4000-	-13	Btm050		0.3	1.7
	0.5mm	GS		Striplin	ne	16in		N4000-	-13	Btm050		0.2	1.2
	0.5mm	GS		uStrip)	02in		N4000-	-13	Btm050		3.8	8.4
	0.5mm			uStrip)	04in		N4000-	-13	Btm050		2.3	6.4
	0.5mm			uStrip)	08in		N4000-	-13	Btm050		1.0	3.9
	0.5mm	GS		uStrip)	12in		N4000-	-13	Btm050		0.6	2.6
	0.5mm	GS		uStrip)	16in		N4000-	-13	Btm050		0.4	1.9
	0.5mm	GSC	9	Striplin	ne	02in		N4000-		Btm050		3.9	12.2
	0.5mm	GSC		Striplin	ne	04in		N4000-	-13	Btm050		1.7	6.7
	0.5mm	GSC	9	Striplin	ie	08in		N4000-	-13	Btm050		0.6	3.0
	0.5mm		3	Striplin	ne	12in		N4000-	-13	Btm050		0.3	1.8
	0.5mm	GSC	9	Striplin	ne	16in		N4000-	-13	Btm050		0.2	1.2
	0.5mm	GSC	9	uStrip)	02in		N4000-	-13	Btm050		5.6	17.2
	0.5mm		3	uStrip)	04in		N4000-	-13	Btm050		2.7	9.4
	0.5mm	GSC	9	uStrip)	08in		N4000-	-13	Btm050		1.1	4.5
	0.5mm	GSC	3	uStrip)	12in		N4000-	-13	Btm050		0.6	2.8
	0.5mm		3	uStrip)	16in		N4000-	-13	Btm050		0.4	1.9
	0.5mm		G	Striplin	ie	02in		N4000-	-13	Btm050		4.1	14.9
	0.5mm	GSS	G	Striplin	ie	04in		N4000-	-13	Btm050		1.8	6.9
	0.5mm	GSS	G	Striplin	ie	08in		N4000-	-13	Btm050		0.7	3.1
	0.5mm	GSS	G	Striplin	ne	12in		N4000-	-13	Btm050		0.3	1.8

System Performance

- SMA Connector → 8" Stripline → MER050 Contactor
- System Bandwidth (-3dB): 3.9 GHz

Conclusion

- A new WLP high frequency solution is available
- Multitest Solution Uses:
 - Simulation and Characterization
 - PCB design recommendations based on high frequency 3D electromagnetic simulation
 - Hardware selection tool to fit the needs of each customer specific application

