

IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Probe to Pad Placement Error Correction for Wafer Level S-Parameter Measurements

Steven M Ortiz RF Test Development Engineer

Email: steven.ortiz@avagotech.com

Overview

- New product development pushes measurement capabilities
- Review of pad de-embedding technique
- Application of de-embedding in novel way to correct probe to pad placement errors
- Experimental design
- Results

Film Bulk Acoustic Resonator

 New product development geared towards using FBARs in oscillators for timing solutions •1.5GHz resonant frequency Resonator •27,000 um² resonator area Quality factor over 1000, up to several thousand 1 year aging spec less than 25ppm

IEEE SW Test Workshop

Pads

Hermetic Wafer Level Package

Image: Second second

FBAR Wafer

Cap Wafer

Cap wafer contains pads with vias down to FBAR wafer

June 12 to 15, 2011

Test Requirements

- Most difficult specification to test is 1 year aging of less than 25 ppm
- Probe-stress-probe tests performed at wafer level to get high confidence in low failure rate
- Since resonator must have less than 25 ppm drift, the tester should be at least 10x better ~2.5 ppm = 3.75 kHz at 1.5 GHz

Tester Block Diagram

Frequency stability achieved with GPS locked reference receiver

June 12 to 15, 2011

Measurement Practices

- More than frequency control required:
 - Careful calibration
 - Temperature controlled chuck
 - Accurate and precise probe to pad placement
 - Small probe tip contact area
 - Verification wafer

It's not enough to just hit the pads

8

Sensitivity to probe position

- A 1.5 GHz FBAR shows 4um shift in the probe position on the pads causes about a 1PPM shift in the resonant frequency
- Modern probers specify accuracy of about +/- 3 um in X-Y across wafer and +/-3 um in Z stage. With a 2:1 overtravel to skate ratio the Z error plus the X-Y errors combine to +/- 4.5 um
- Infinity probe contact area is 12x12 um effective contact point is inside this square

De-embedding Review

- Typically used for transistor measurements above 10 GHz where pad effects are deemed significant
- Yields a measurement of device without pad parasitics

June 12 to 15, 2011

De-embedding Structure Layout

Open and Short structure repeated 80 times equally spaced on wafer

Device pads

Open structure

Short structure

June 12 to 15, 2011

Measurement

- Vector Network Analyzer calibrated down to probe tips
- Scattering parameters of Short, Open, and Device collected
- Complex S matrices converted to Z and Y parameters for de-embedding
- De-embedding moves reference plane down to device inside of pads

De-embedding Method 1 of 3

1. De-embed Open from Device

 Since Open is in parallel with DUT, use admittance

$$Y_{DUT} = Y_{DUT _MEAS} - Y_{OPEN}$$

June 12 to 15, 2011

De-embedding Method 2 of 3

2. Short is made as an Open plus a shorting strap, so de-embed Open from Short

$$Y_{SHORT} = Y_{SHORT} __{MEAS} - Y_{OPEN}$$

De-embedding Method 3 of 3

3. De-embed Open and Short from DUT

New Application

- Periodic Short and Open structures are measured and fit to a set of surfaces
- Systematic probe to pad placement errors are then compensated at every location on the wafer by de-embedding the fitted Open and Short parameters

 Technique corrects systematic errors in X, Y, Z, and rotation of wafer relative to probe tips

Surface Fit Map Example

Open and Short surface maps generated for conductance and susceptance (two maps each)

June 12 to 15, 2011

Experimental Design

- 1. Measure Open and Short structures across one wafer
- 2. Measure 2000 product dice
- 3. Move probes 25 um in x-direction
- 4. Re-measure Opens and Shorts
- 5. Re-measure 2000 product dice
- 25um
- 6. Compare results with and without deembedding Open and Short surface maps

Results 1 of 2

- Moving probes 25um on pads and repeating measurements causes -6.6 ppm frequency shift (9.9 kHz at 1.5 GHz)
- Yield inside +/- 2.5 ppm window is less than 1%

Results 2 of 2

- De-embedding based on surface fit data before and after moving probes makes measurements insensitive to probe to pad placement. Mean shift less than 1 ppm
- Now yield inside +/- 2.5 ppm window improves from less than 1% to over 83%

Future Work

- Calibration repeatability
 - Network Analyzer calibration suffers from same probe to pad placement effects as DUT. How can we improve the repeatability of the calibration?

June 12 to 15, 2011

Conclusion

- Pad de-embedding demonstrated to be useful to correcting systematic probe to pad placement errors on wafer prober
- Pad de-embedding at relatively low frequency necessary for highly repeatable results
- Technique extensible to arbitrary number of ports

