IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 12 to 15, 2011 San Diego, CA

Achieving Low-Risk, Volume
Manufacturing on Leading Edge
Technology Probecards; Definition
and Methodology for Implementing
a Process Control System

'inte

Douglas A. Sottoway
Anil Kaza
Intel STTD Wafer Test

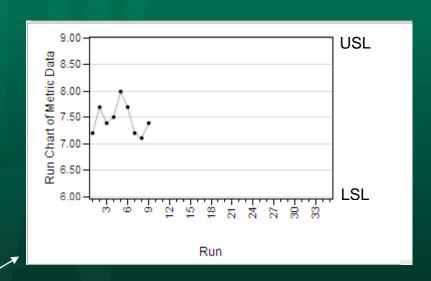
The Title

- Made the title so it sounds very important.
 Why? Because it is. But what is it?
- Here is the title to put in your mind...
 - What is a process control system, why do I need it?

Motivation for PCS

- Wafer test technology challenges continuing
 - Shrinking pitch, increasing array size/probe count, current carrying requirements
- Shrinking process window at test
 - Performing test efficiently and producing correct results is very difficult
 - No longer have huge margins to allow test process to vary!
- A robust process control system is now a matter of SURVIVAL!
 - In my opinion, if you're not doing this already, you need to start now
 - Within spec monitoring not enough
 - 7 years go we needed PCS in sort
 - Every couple months the yield department would find something wrong with tool at sort
 - Control charts were put in place to detect issues, this was better but still too many issues
 - Simple PCS charts not enough, need fab solution, entire system for good process control

The Stoplight


- In the days of horses and buggies, the stoplight had only red/green
 - In 1920 William Potts realized the advent of automobiles required a better method, i.e., a yellow caution signal
- Specifications (red/green only) not enough to ensure a robust output and expected results
- Now need yellow, proceed with caution (control charts)
 - Something bad could happen unless good decision-making utilized
- Control charts are the core of PCS

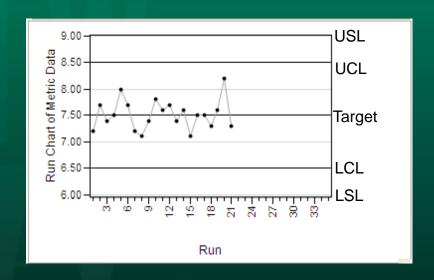
How to Create a Control Chart

1. Define Performance Parameters

- Contact resistance
- Find Critical ProcessParameters (CPPs)
 - probe length mean

2. Study variation and set control limits

Control limits should be practical


How to Create a Control Chart

3. Run baseline process

- Engineer identify special cause and fix
- Find out if process stable and capable

4. Response procedures documented and trained

Empower workforce with correct tools

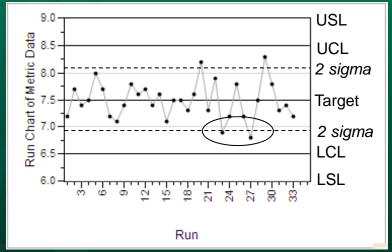
Of Note:


- Expect many signals during initial volume
 - Engineering spends time responding to and learning about the signals
 - Root cause fixes are put in place and response procedures are documented and trained
- The process gets healthier, control charts are improved
- The amount of learning and process improvement made simply from responding to good control charts is amazing, and I've been doing this for 21 years

What is a Process Control System?

- Control charts provide the caution light but...
 - There are other critical components that the organization must have to make control charts fully effective

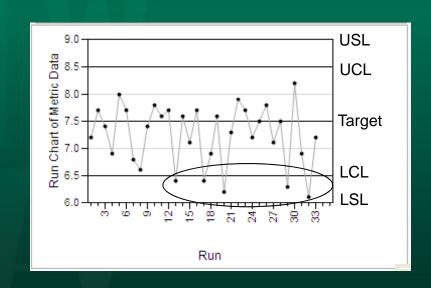
Any weakness in the other PCS components will eventually lead to process health issues


Example: During Development Worn Part Signal Found

Control chart:

- Mean of probe length
- Limits set ~ 3 sigma
 - Cpk to spec limits is 1.3

Learning:


- Concern with worn part
- Implement quarterly PM
- Process step is stable and capable

Example: 1 Year Later

- Production team sees out of controls (OOCs)
 - Huge increase in volume
 - 2 tools to 5 tools
 - Conclude 3 added toolsrun a little different
 - Still within spec
 - Increase lower control limit

Example: Breakdown in Process Control

- 1 month later quality assurance sees uptick in the array planarity and contact resistance. Two probecards have to be scrapped. Task force started.
 - 3 months later the planarity and contact resistance problem is correlated to the worn part on the tool that cuts the probe
 - Where breakdown in process control?
 - Process step spec did not contain information identifying worn part issue
 - With increase in volume the quarterly PM was not frequent enough

Solution

- Development engineer adds troubleshooting section to spec -- how to ID the signal (3)
- Manufacturing is trained how to inspect the worn piece (2)

Document

Training (2)

Control (3)

- A volume-based PM is implemented after approval by process change control board (4)
- Control limits are set using appropriate baseline process data (1)

 Management sets up a monthly control chart review, requires review of all control limit changes (5)

Process

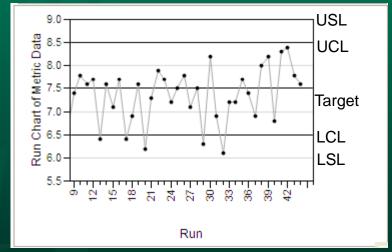
Change

Control(4)

Management

Review (5)

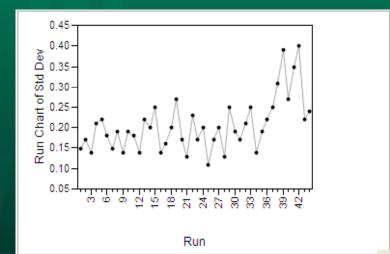
Control Charts (1)


Example: Engineer Makes Improvement

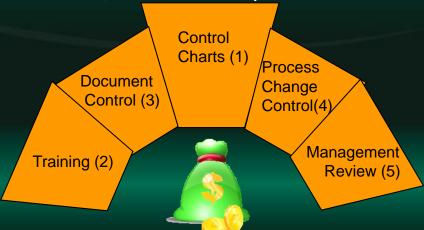
Good engineer wants to increase output

- Solution found for worn part
- Extra piece drastically reduces wear
- Data looks good
- Manager approves implementation

- Quality engineer starts sending messages to all engineering...seeing some occasional open resistance readings from probes
- A few weeks later a customer calls and...you guessed it, starts yelling. The good engineer above has already checked control chart finding mean of the process is on target and in control
- Turns out the extra piece produced a small outlier distribution in the probe length and since the control chart is for mean, the outlier probes did not significantly impact the trend



Example: Breakdown in Process Control


Two problems:

- Lack of a standard deviation control chart (1)
- System for process change control was weak (4, 3)
 - Need a process change review board and documentation system for all process changes

- Fixed set of people with the most expertise
- Review and approve qualification plans before data collection
- Standard change control template to ensure consistent expectations

PCS will improve over time, this is the experience at Intel

Call to Action

- Another quick story from experience
- PCS is a matter of survival
 - All components critical to process health and predictable output

