

IEEE SW Test Workshop Semiconductor Wafer Test Workshop

> June 12 to 15, 2011 San Diego, CA

A New 3D Laser Bonding Process for Single Spring Attach on 300mm Probe Cards

Jens Oesterdiekhoff, Ghassem Azdasht, Thomas Oppert, Elke Zakel, Thorsten Teutsch*

Pac Tech – Packaging Technologies GmbH Am Schlangenhorst 15 -17, Germany

http://www.pactech.de

*Pac Tech USA – Packaging Technologies, Inc.328 Martin Avenue, Santa Clara, CA 95050

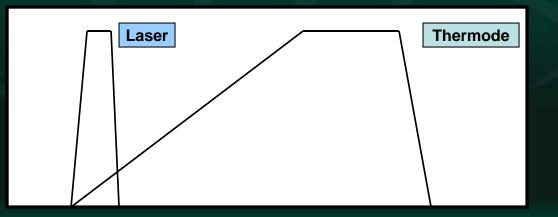
Advantage of Laser Bonding

Localized heat –

no thermal stress on the areas outside of bonding interface

Short laser pulse –

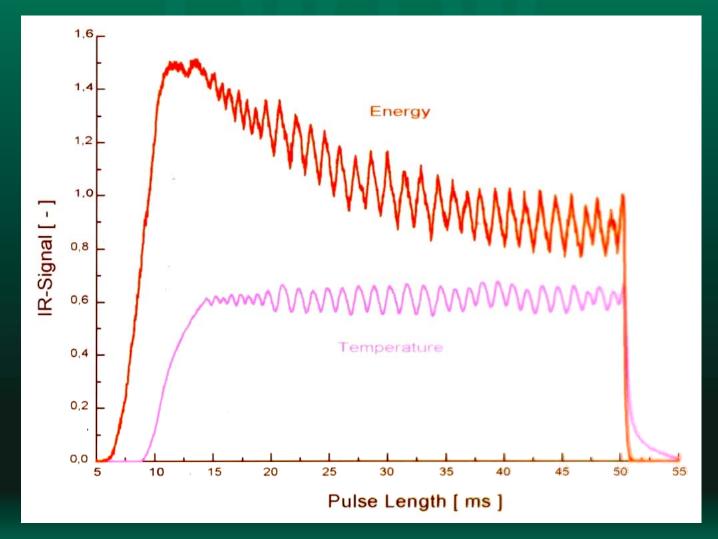
low thermal stress on chip/ substrate and interconnection



June 12 to 15, 2011

Thermode Bonding vs Laser Bonding

Heating time to bonding temperature:


Laser:	0.01 - 0.2	sec ~	msec
Thermode:	1 – 10	sec ~	sec
Oven Reflow:	<u>60 — 180</u>	sec ~	min

June 12 to 15, 2011

Temperature Control Through In Situ Laser Energy Tuning during Bonding

June 12 to 15, 2011

Compatible Substrate Materials for Laser Soldering

Substrate

- FR4, BT- Epoxy, Polyimide, Ceramic, Silicon
- TG above 150 ° C
- most applications: rigid

Pad metallization

- Copper coated with NiAu, Sn, Au
- Thin Film : Cr/Au, NiAu, Au

Advantages of Laser Bonding for Probe Card Assembly

Flexibility

- layout change by software only
- multiple spring design
- independent from substrate material
- Repair Capability
 - quick & local
- Customer Support
 - quick & local

Cantilever Assembly Process Flow

Cantilever Design

Cantilever Manufacturing (Plating)

Cantilever Singulation (Laser Cutting)

Cantilever Inspection

Cantilever Sorting (into waffle packs)

Substrate Solder Bumping

Cantilever / Substrate Alignment

Cantilever Laser Bonding

Cantilever inspection (optional)

June 12 to 15, 2011

Cantilever Assembly Line for Probe Cards

SB2-Jet: Solder Jetting

Cantilever Sorter

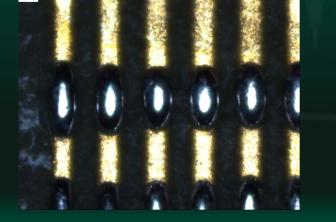
- Input: MEMS substrates
- Inspection of cantilever
- Laser cutting with the Laser
- Placement of cantilever in waffle packs

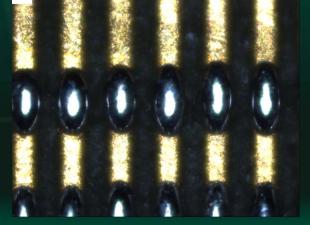
- Solder Jetting on ceramic substrate
- Solder Balls sizes: 30 – 760 µm,
- Solder alloys capability: PbSn, SnAgCu or AuSn

Cantilever Bonder

- Cantilever supplied in waffle packs
- Cantilever pick & rotation in vertical position
- Substrate height measurement
- Dual camera for x,y alignment of cantilever to the substrate
- Probe tip z alignment
- Laser bonding of cantilever
- Post inspection
- Cantilever rework capability

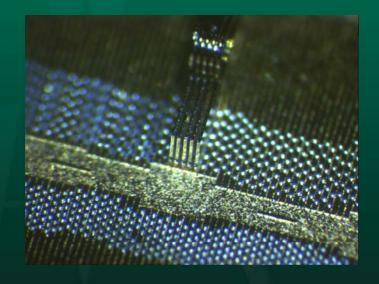
Laser Soldering SB²-Jet




June 12 to 15, 2011

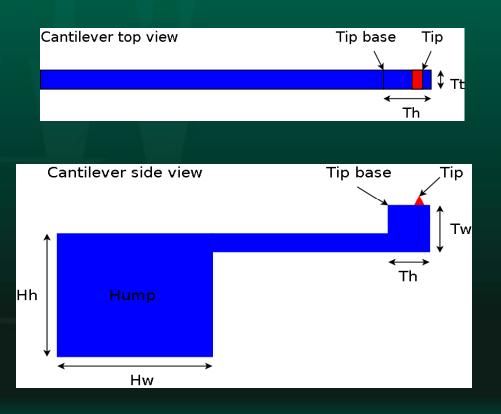
Solder Ball Placement

Pictures are showing solder depots placed by SB²- jet process on substrate pads

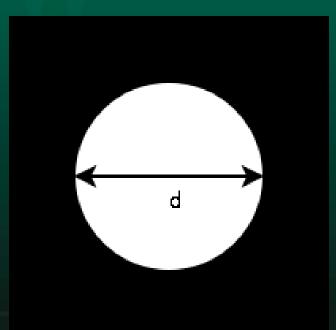


June 12 to 15, 2011

Cantilever Bonder Specification

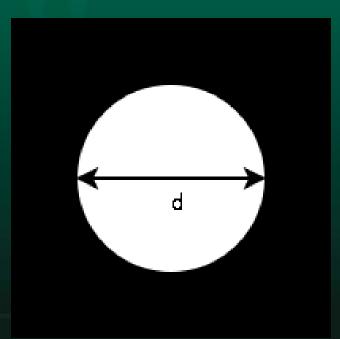

- Linear axis or gantry system
- Probe card sizes up to 13 inch
- Full process control
- Alignment control by position bonding
- Placement Accuracy: down to +/- 3μm typ. +/-5μm
- High power laser for bond reflow
- Height control: 1µm accuracy
- Cantilever thickness: $20 100 \mu m$
- Min. Pitch: 60µm
- High mechanical stability of probes
- Process suitable for rework and complete card assembly

Cantilever Design Rules


- Hump needed for handling and laser energy absorption
 - Hh ≥ 500 µm
 - Hw ≥ 500 μm
- Tip base needed for alignment.
 - Th ≥ 200 µm
 - Tw ≥ 200 µm
- Well defined edges are
 important for vision system

Fiducial Mark Recognition

- Automatic X,Y substrate alignment after loading and bond stage rotation (W-axis)
- Pattern recognition with bond head camera
- Alignment accuracy: +/- 1µm
- High contrast simple mark
 needed



d = 100 µm

Substrate Height Measurement

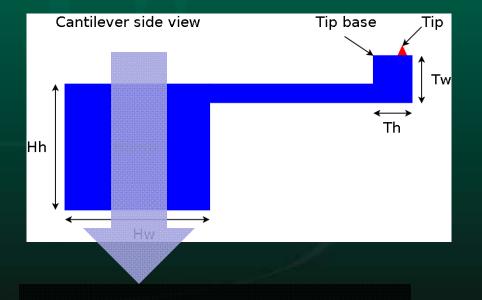
- Continuous substrate height measurement during bond process
- Sensor: Laser scanner (+/- 0.05 μm)
- Alignment accuracy: +/- 3µm (Z-axis)
- Measurement pad 200 µm with bond pad height used

d = 200 µm

Alignment Scheme

Cantilever recognition in waffle pack

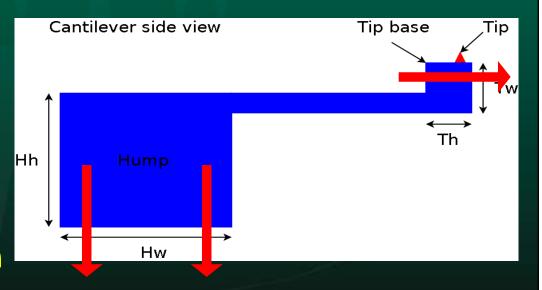
- Pattern recognition of whole cantilever
- Detects position in waffle pack pocket (A,B axis)
- Discards defect cantilevers
- Sensor: Camera 4 on Pick&Flip unit
- Alignment accuracy: +/- 5 µm


Rotation and alignment for tool transfer

- Pattern recognition of whole cantilever
- Detects transfer offsets for bond tool (B,D,Z axis)
- Discards defect cantilevers
- Sensor: Stationary Camera 2
- Alignment accuracy: +/- 5 μm, +/- 0.5°

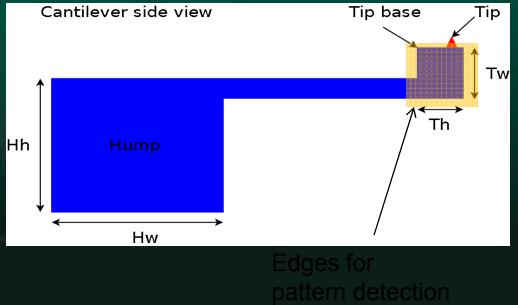
Mechanical Correction

 Cantilever is fitted into bond tool by touching down on a mechanical spring

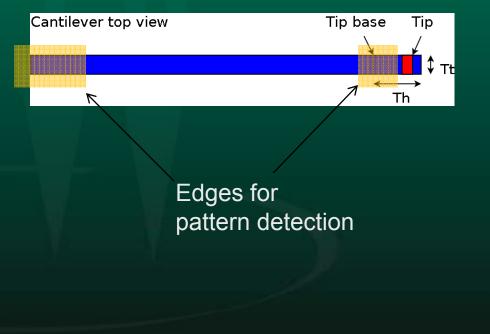


Laser Scan Alignment

• A laser scanner determines


- X offset for bonding
- U angle correction
- Tilt (hump bottom <-> tip base)
- Three scans per measurement
- +/- 0.01 µm laser scan repeatability
- +/- 1 μm accuracy

Microscope Tip Recognition


- Sensor: Side microscope camera 3
 - Y offset for bonding
 - Z offset for bonding
- +/- 1 µm accuracy

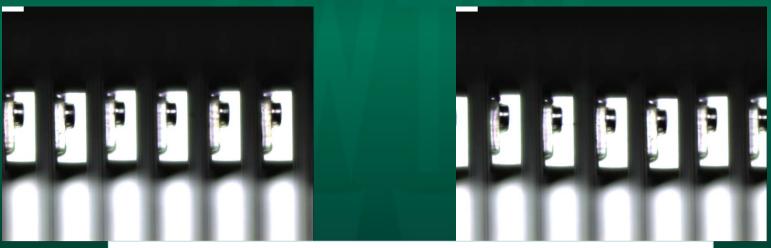
Post Bond Hump/Tip Inspection

- Sensor: Bond head camera 1
- Accuracy +/- 1 μm
- Results used for smart correction of next bond process
- Well defined edges for repeatable pattern detection needed

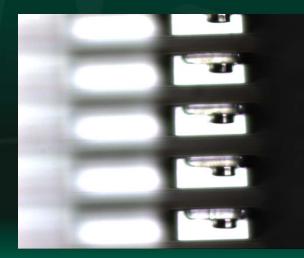
Alignment Summary


Step	Alignment procedure	Corrected axis	Sensor	Measured feature	Alignment Accuracy
1	Fiducial marks on substrate	X,Y,W	Bond head – Camera 1	100 µm high contrast circle	+/- 1 μm
2	Substrate height	Z	Laser Scanner - Top	200 µm diameter height measurement mark	+/- 0.05 μm (laser) +/- 3 μm (Z-axis)
3	Detect cantilever in waffle pack	A,B	Pick&Flip Unit - Camera 4	Cantilever	+/- 5 μm
4	Rotation and alignment for tool transfer	Z,B,D	Stationary Camera 2	Cantilever	+/- 5 μm +/- 2°
5	Mechanical spring correction	Z	Mechanical spring	-	-
6	Laser scan alignment	X,U,Tilt	Laser Scanner - Side	Hump bottom and tip	+/- 0.01 μm(laser), +/-1 μm(axis), +/- 0.015°
7	Microscope tip recognition	Y,Z	Microscope side cam - Camera 3	Cantilever Tip	+/- 1 μm
8	Post bond hump/tip inspection	X,Y	Bond head – Camera 1	Hump or tip	+/- 1 μm
WTW					

June 12 to 15, 2011

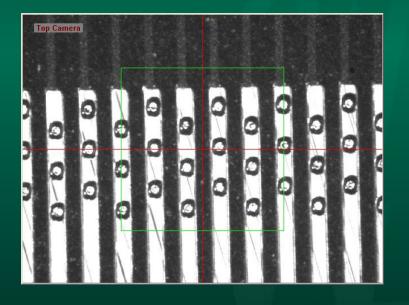

Alignment Summary

- Tip accuracy (machine capability):
 - in X +/- 2 μm
 - in Y +/- 2 μm
 - in Z +/- 4 μm

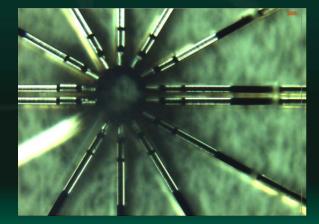


Cantilever Placement Results

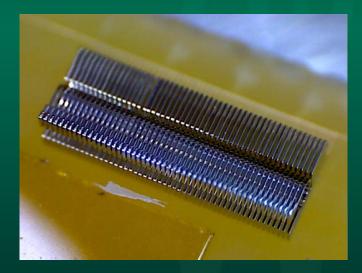
Picture showing Cantilever tip, placed by Laplace-3D process (80µm pitch)



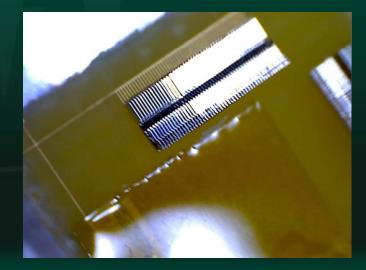
June 12 to 15, 2011


Cantilever Bonding at 60µm pitch

Cantilever Bonding at 360 deg






June 12 to 15, 2011

Cantilever Placement Results

Picture showing Cantilever overview, placed by Laplace-3D process (80µm pitch)

June 12 to 15, 2011

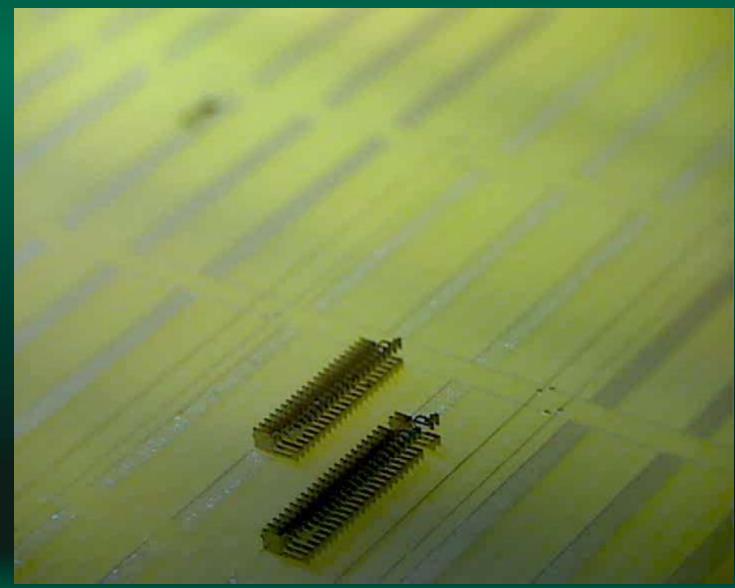
Process Data

X,Y Placement Accuracy

Summary		
Min Value [mm]	-0.0035	-0.0033
Max Value [mm]	0.0013	0.0021
Range [mm]	-0.0048	-0.0054
StDiv [mm]	0.00101357	0.00126077

Placement Speed

30µm cantilever width, 80µm pitch 10 sec per cantilever (w/o post inspection)
< 15 sec per cantilever (with post inspection)</pre>


Laplace-Can Test Run: Cantilever Positioning Accuracy

Positioning Accuracy	Tip X Error [mm]	Tip Y Error [mm]
Average	0,0002	0,0000
Min Value	-0,0033	-0,0021
Max Value	0,0033	0,0026
Range	-0,0066	-0,0047
StDiv	0,001819	0,000970

Sample: 1000 cantilever, Pitch: 100µm

Cantilever Bonding Video

June 12 to 15, 2011

Cantilever Rework Video - Removal

June 12 to 15, 2011

Cantilever Rework Video - Soldering

June 12 to 15, 2011

Summary

- A new laser assisted sequential cantilever attach process has been presented
- Placement accuracies down to +/-3µm in X,Y have been demonstrated
- Assembly throughput of 10 sec per spring has been observed
- Probe springs can be assembled with free 360 deg orientation
- A fine pitch capability down to 60µm has been accomplished
- The assembly process is capable of single spring rework

Contacts:

PAC TECH EUROPE

Contact	Telephone	Fax	E-mail
Dr. Elke Zakel	+49-3321-4495-100	+49-3321-4495-124	zakel@pactech.de
Thomas Oppert	+49-3321-4495-100	+49-3321-4495-610	oppert@pactech.de
Ghassem Azdasht	+49-3321-4495-100	+49-3321-4495-124	azdasht@pactech.de

PAC TECH USA

Contact	Telephone	Fax	E-mail
Dr. Thorsten Te	utsch +1-408-588-1925	+1-408-588-1927	teutsch@pactech.com

PAC TECH ASIA

<u>Contact</u>	Telephone	Fax	E-mail
Sales team	+60 4-6440 986	+60 4-6449 987	sales@pactech-asia.com

