

IEEE SW Test Workshop Semiconductor Wafer Test Workshop

> June 12 to 15, 2011 San Diego, CA

Identification, analysis and control of high temperatures on wafer test probing processes

Marcel Bleyl, Jan Martens

NXP Semiconductors Germany

Darren James

Rudolph Technologies

Joint Cooperation & Motivation Temperature Influence on Probing Experimental data

Results & Future Work

June 12 to 15, 2011

Joint Cooperation & Motivation

Temperature Influence on Probing Experimental data Results & Future Work

June 12 to 15, 2011

NXP Testcenter Europe

- Engineering site for high performance mixed signal products, automotive and identification business.
- Applications with very high multisite factors and small pad pitch.

• Capability to collect high temperature probing data within production like automated environment

NXP Motivation

- High temperature probing becoming more challenging due to increasing requirements (e.g. 200 °C), mostly driven by the automotive market.
- Smaller pad libraries of advanced processes require higher accuracy to the probe to pad alignment (PTPA).
- Probing process analysis was made inhouse in the past. Evaluation of external tools was needed.
- Review and optimization of existing NXP production process settings for soaktimes and PTPA
- Standardization of probing process analysis needed in NXP.

Rudolph Technologies Motivation

- Validate new wafer sort process capabilities
- Collaborative partnership with industry leader
- Positive feedback for product development

WaferWoRx Process Analysis

- KGD critical markets
 - Automotive
 - Medical
 - TSV & Stacked packaging

• Rapid data analysis and review

- High temperature applications
- Low temperature applications
- All probe card technologies

• Multiple data review options

- Normalized single variable
- Vector view
- User selectable

June 12 to 15, 2011

Joint Cooperation & Motivation

Temperature Influence on Probing

Experimental data Results & Future Work

June 12 to 15, 2011

PTPA stress influence

Main mechanical stress factors

- Test head docking depending on interface design
- Probe card fixture and landing in probe card changer
- PCB Stiffner fixture
- Probe head fixture (for replaceable heads)
- Main thermal stress factors
 - Thermal gradient in probe card
 - PCB stiffness
 - Thermal expansion of head plate and probe card changer
 - Moving chuck \rightarrow continuous stress, no saturation
 - Chuck distance (clearance) to probe card

Continuous thermal stress by moving chuck

• Wafer start up

- Fast heating of PCB
- Head plate slow temp. change

Moving chuck

- Change of thermal gradient in PCB
- Depends on size and thickness

• Long term status

- Headplate warms up
- Continuous change of thermal gradient in PCB

Solutions to limit thermal stress

Preventive Probe card solutions

- Probe card construction/materials
 - Schaefer et al SWTW2009
 - Breinlinger SWTW2010
- Probe card shielding to reduce heating
 - Wegleitner et al SWTW2006
- Probe card heater to harmonize temperature gradient
 - Molinari et al SWTW2010
 - Wegleitner et al SWTW2006

• Online Process solutions

- Soak times to avoid big movements at wafer start
- Probe to pad realignments to compensate continuous stress by moving chuck
- Find ideal stepping pattern

June 12 to 15, 2011

Online Realignment - pros & cons

Manual probe mark inspection and realignment by operator (2D)

- + Flexible use, no equipment automation needed
- Difficult use for large probe arrays and multiple touchdowns
- Slow, expensive and inaccurate if realignment frequency is too high
- Automated probe mark inspection and realignment (2D)
 - + Faster because of 2-dimensional analysis only
 - Not usable for second or further test stages due to multiple probe marks
 - Some probe technology/pad technology combinations have invisible probe marks
 - No probe height correction.

- + Usable for multiple test stages
- + Direct needle height measurement
- Not fast enough if too many probes inspected
- Depends on prober and camera alignment accuracy (probecard/wafer alignment)

NXP

Solution

Production data example

Prober needle realignment log data for 12 tested wafers (2,5h/wafer @ 125°C)

Joint Cooperation & Motivation Temperature Influence on Probing

Experimental data

Results & Future Work

June 12 to 15, 2011

Overview DOE's

In total 6 experiments including 45 wafers with 60 different settings were prepared

DOE 1 Tool Comparison

 10 wafers were prepared in order to compare inhouse solution to WaferWoRx

DOE 2 Stepping pattern optimization

- 5 wafers were used
- DOE 3 Realignment Optimization
 - 17 wafers were analysed with a large temperature range and different realignment/soaktime settings

DOE 1 - Tool Comparison

Comparison of WaferwoRx with NXP solution

 10 wafers were probed with intentionally generated, typical production probing errors.

– Probe card errors: pitch, role, yaw, etc.

- Prober errors: Scaling, orthogonality, overtravel, etc.
- Rudolph WaferwoRx and NXP inhouse inspection solution scanned all wafers
 - All 10 errors identified by both machines and teams
 - Both machines capable to identify typical production errors, misalignments and maintenance issues

DOE 2 - Stepping pattern optimization

What is the best probing pattern for high temperatures?

• 5 Wafers were probed with different stepping patterns on wafer

- Probing paths created with MultiSiteOptimizer (MSO) by SPA
 - Standard meander
 - Radial and spiral starting in the middle
 - Shortest and longest probing path
- Probed at 125°C without realignment
- Standard soak time 2min. after direct heating from 30°C to 125°C

• Probing configuration

- Accretech UF3000, Teradyne J750
- Vertical Probecard, 104 beams

• Analysis done on WaferwoRx + MS Excel

Additional analysis with Excel 2007 and Pivot Feature

DOE 2 - MSO stepping pattern description

DOE 2 - WaferWoRx Y Scrub Position

June 12 to 15, 2011

DOE 2 - WaferWoRx Vector View

June 12 to 15, 2011

DOE 2 - Conclusion from WaferWoRx view

- Stepping Pattern recognized in plots
- Estimation possible on favorable pattern

How do I...

- get the probing time aligned with my analysis data?
- compare wafer results in one graph?
- get more flexibility to experiment with probemark data?

→Additional analysis with Excel 2007 and Pivot Feature

DOE 2 - Total probe area

Comparison of stepping patterns regarding probe area

June 12 to 15, 2011

DOE 2 - PTPA development

Development of probe mark position resp. probing time

DOE 2 - X/Y Position change

X/Y Postion [µm] over time (~1hour) for different stepping pattern

DOE 2 – Comparison Y Position

Y Position [µm] over time (~1hour) for different stepping pattern

DOE 2 – Comparison X Position

X Postion [µm] over time (~1hour) for different stepping pattern

DOE 2 - Results

What is the best probing pattern for high temperatures?

- Significant probe to pad movement at 125°C
 - All pattern need minimum one realignment
 - Smallest movements with radial/spiral pattern
 - Shortest and longest way unexpected large movements
 - Longest way expensive very large index times
- WaferwoRx improvement proposals
 - Time resolution 2D charts
 - Data comparison of several wafers in one graph
 - Time resolution scatter plots
 - Video scatter plots

DOE 3 – Realignment Optimization

What are the best realignment settings for extreme temperatures?

17 Wafers were probed with different temperatures/realignment/soaktime settings

- Cold, ambient, hot (-60°C, 30°C, 125°C, 175°C, 200°C)
- Meander and Radial probing pattern for high temperatures
- Soaktime 2min and NXP std. realignment

Probing configuration

- Accretech UF3000, Teradyne J750
- Vertical Probecard, 104 beams

• Analysis done on WaferwoRx + MS Excel

Additional analysis with Excel 2007 and Pivot Feature

DOE 3 - WaferWoRx Y Scrub Position

June 12 to 15, 2011

DOE 3 - WaferWoRx Vector View

June 12 to 15, 2011

DOE 3 - Conclusion from WaferWoRx view

- Expected temperature difference recognized in plots
- Realignment positions visible
- Estimation of optimized realignment settings difficult

How do I...

- get the probing time aligned with my analysis data?
- include prober needle realigment data?
- get more flexibility to experiment with data?

→Additional analysis with Excel 2007 and Pivot Feature

June 12 to 15, 2011

Development of the probe position in time

We're getting there...

June 12 to 15, 2011

Probemarks grouped in the realignment phases using Prober log data

Significance of realignment visible by comparing total probe area

DOE 3 - X/Y Position change

X/Y Postion [µm] over time (~1hour) for different temperatures

DOE 3 – Comparison Y Position

Y Postion [µm] over time (~1hour) for different temperatures

June 12 to 15, 2011

DOE 3 – Comparison X Position

X Postion [µm] over time (~1hour) for different temperatures

DOE 3 - Results

What are the best realignment settings for extreme temperatures?

- All hot and cold probing temperatures show significant probe to pad movements
 - Temperature distance to ambient is main driver
 - 200°C with biggest probe to pad deviations
 - Realignments defined depending on probing temperature
- WaferWoRx improvement proposals
 - Probe log data and map data input interface
 - Realignment identification
 - Raw data transformation and modification

Joint Cooperation & Motivation Temperature Influence on Probing Experimental data

Results & Future Work

June 12 to 15, 2011

Results

• Successful process optimization

- Different stepping patterns evaluated
- Soak time and realignment settings optimized
- Up to 200°C tested and recipes defined
- Evaluation of WaferWoRx to in house tools done. Both are technically comparable.
 - All standard errors were succesfully identified.
- Recommendations developed to improve WaferWoRx models and graphical user interface
 - Temperature analysis needs time resolution GUI
 - Prober log data and map data input interface
 - Raw data transformation and modification needed

Future Work

 Analyze and understand differences of different hardware combinations

 Improve test cell hardware performance to reduce number of needed realignments

Analysis results and method to be roled out in NXP

Acknowledgements

- Rudolph Technologies
 - Darren James
- JP Kummer
 - Rex Sandbach
 - Sam Waggoner
- Accretech
 - Maik Ehlen
- NXP Semiconductors
 - Thomas Dabelstein
 - Jens Däbritz
 - Swen Mohr

Providing NXP with oppurtunity to evaluate WaferWoRx and optimize performance.

Working on preparation, data acquisition and analysis.

June 12 to 15, 2011

Questions?

June 12 to 15, 2011