EEEE SW Test Workshop
Semiconductor Wafer Test WorkshopImage: Semiconductor Wafer Test WorkshopImage: Semiconductor Wafer Test WorkshopImage: Semiconductor Wafer Deep
founded by PhilipsImage: Semiconductor Wafer Test WorkshopImage: Semiconductors GermanyImage: Semico

Contact formation in wafer test probing Fritting, breakdown, pad damage and conduction June 12 to15, 2011 San Diego, CA USA

Our motivation for these experiments:

Todays probing is rather aggressive: 200-800nm probe mark depth is common practice.

POAA requires very careful probing to avoid damaging the delicate structures under the pad.

- We want to probe less aggressively!
- We need to understand the contact interface!

June 2011

Content

- System description: Test machines, methods and material.
- Results for probing copper, aluminum and gold.
- Influence of fritting.
- Properties of a very soft contact.
- Simulation as a tool to optimized soft contacts.

System Description

- ViProbe[®] S-Type
 59µm pitch for up to 180°C
 self scrub vertical probe technology
- Trivar[®]-HC probe for high current
- 45 probes test image (more than 2000 probes possible)

→ all tests done using this type of probe head

System Description

- Prober: UF-3000
- Tester: Keithley 2601A with 500-channel multiplexer
- Class 10.000 clean room
- Wafer:

→ blank AlCu_{0.5%}, 1200nm
 → blank plated Cu, 7100nm
 → blank plated Au, 2000nm

We know we can probe perfectly

.... but to learn we need to provoke failure!

- NO online cleaning

- reduced overtravel for some tests
- mixing pad materials

Classical Concept of an Electrical Contact

a non conductive surface film inhibits current to flow

metal has partly contact to tip fritting^{*} widens the contact areas

June 2011

* see SWTW, MARTENS 2006 and 2009 and DEGEN 2006

Aluminum, Copper, Gold - Surfaces

Experiment setup

- <u>Common probing</u> (+28°C; +180°C, 80μm overtravel) with common resistance testing @ 2V, 20mA limits
- for selected touchdowns alternatively "<u>I / U -measurements</u>", 6x current slopes with limited voltages: 10μA to 100mA (6steps/dec.) @ +10mV; -10mV; +100mV; -100mV; +1.0V; -1.0V

Experiment Overview: 26 single steps

Experiment Overview: reference

_{Mag = 15.00 K χ} 2 μm

EHT = 3.00 kV

V/D = 5.0 mm

Detector = InLens

Aperture Size = 30.00 µm

High Current = Off

Pivel Size = 19.60 pm

FIB EHT = 30.06 kV

Stage at R = 16.5

FIB Probe = 30KV:300 pStage at T = 55.0 *

FIB Mag = 6.25 K X Date :20 May 2011

Tilt Corrn. = On

Tit Angle = 36.0 "

User Name = HUEE

🜌 Fraunhofer

ŚWTW

June 2011

¹⁾by nano-indentation

FEINMETALL, Seekamp /

1 Copper Probing: Cres

Best performing probes only (8 out of 45)

the system reacts sensitive to disturbances

June 2011

1 Copper Probing: Cres

Best performing probes only (33 out of 45, wafer border effects removed)

\rightarrow 2/3 are in spec initially

1 Copper Probing: fritting selected probes

Example for bad contact on copper: 2.8 Ohm

Same probe, next touchdown. Starting with even worse resistance of 6.3Ohm, fritting at 0.35V, then 3.5 Ohm resistance.

➔ fritting makes it better, but not perfect

June 2011

1 Copper Probing: I / U measurements selected probes

→ surface layer effects are visible

1 Copper Probing: summary

Copper probing is different from Al-probing:

- copper types are different
- same type can show a broad range of surface conditions

2.5mil probe on copper studs after application specific cleaning application

2 Aluminum Probing: Cres

- 180°C probing
- still no cleaning at all

Very low Cres, even though the probes have been contaminated with copper

June 2011

Gold Probing: Cres after Contamination with Cu_xO_y and Al₂O₃

- I/U measurements only
- best 36 probes out of 45

➔ tip contamination leads to instable contacts, even on Gold

Our Results

- Aluminum probing has been very stable, even under bad conditions
- Copper probing often requires application specific online cleaning
- Gold probing needs fresh tips

Fritting Investigation

- Selected data from the I/U-measurements
- Fritting definition:
 R_{100mA} R_{63mA} > 30mOhm Cres change

•	Available data sets so far:	percentage fritting contact	ts
	- 50 TD on aluminum / 80µm OT	0.22%	
	- 16 TD on copper / 80 μm OT	36.16% `o	
	- 13 TD on aluminum / 80µm OT	1.37% P	
	 1 TD on copper / 13 sets of OT (20-80µm) 	1.20% to	
	- 1 TD on aluminum / 13 sets of OT (20-80 μ m)	1.71%	
	- 350 TD on gold / 80μm OT	3.54%	

Fritting on Copper

16 TD CRES distribution

Fritting on Copper

16 TD CRES distribution

June 2011

Fritting on Gold after Contamination with Cu_xO_y and Al_2O_3 350 TD CRES distribution

Fritting on Aluminum

50+13 TD CRES distribution

Fritting Voltage Distribution @ 100mA

indication towards material dependence of fritting voltage

Our Results

- Fritting requires a specific minimum current and voltage.*
- Higher current yields lower resistance.
 Fritting does not "heal" the contact.*
- Fritting voltages may depend on pad materials. We found values from 0.2V to 0.5V.

June 2011

* see SWTW, MARTENS 2006 and 2009 and DEGEN 2006

AFM Measurements on Probe #25 Probe Tip and Scrub Mark Topography

Beam after 26439 touchdowns Diameter: 14 µm Traces of all pad materials on surface

FEINMETALL, Seekamp / Boehm / Martens / Mittag

1.5 14 1.3

1.1

0.9 0.8 0.7 0.6 0.5

0.3

0.1

-0.1 -0.2 -0.3

Scanning Tunnel Spectroscopy

- Measuring the conductivity of a surface
- NO contact to the surface, but distance in the tunneling range
- extremly tight distance control

June 2011

FEINMETALL, Seekamp / Boehm / Martens / Mittag

2.5E-03

5.0E-03

Soft contacts for POAA

"No damage" contacts for POAA will rise the following challenges:

 more complex contact physics: acceptable for logic I/O critical for power/GND difficult for analog signals

- non-linear contact characteristics

→ no real limit for measurements, but a challange for power supply

Advanced Contact Requirements are Covered by Simulations

- To optimize a system the following components are required:
- Accurate measurements of scrub mark dimension and depth using AFM
- Measurements of the tip using AFM or SEM and microscope
- FEM simulation to correlate the theory to the experiment

FEM simulation of probing Al with 1.6mil probe

path controlled calculation

June 2011

Comparison of FEM and AFM Measurements

the probe above has been used for these scrubs

June 2011

FEINMETALL, Seekamp / Boehm / Martens / Mittag

direction of scrub-

30 µm

Summary

- Common probing relys on surface deformation but leads to a contact with constant, small resistance
- "No damage" probing requires a more detailled test algorithm to take the contact interface into account.
- An optimized system allows for stable soft contacts.
 Optimization will include detailled surface analysis combined with extended simulation.
- Fritting can be predicted by initial resistance measurement.

Outlook

- Extending the experiments towards service life.
- Including very high current applications.
- Constantly enhance analytics for probes and pads.
- Develop simulations towards CAE/CAM for next generation probes.

Acknowledgements

- Tino Stephan (Fraunhofer-IWM)
- Georg Lorenz (Fraunhofer-IWM)
- Martin Bogner (Uni-Stuttgart)
- Juergen Bauersfeld (FEINMETALL)
- Michael Holocher (FEINMETALL)
- Georg Steidle (FEINMETALL)
- Christoph Gers (FEINMETALL)

- AFM measurements, film thickness
- FEM simulations
- STS measurements
- prober tests, prober software
- testhead preparation
- AFM measurements
- contact technology

Thank You.

FEINMETALL GmbH Herrenberg, Germany www.feinmetall.de

