Crossover in TD efficiency – When brick wall is not the best.

Keith Breinlinger Ph.D. FormFactor, Inc.

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 10 - 13, 2012 | San Diego, California

Overview

- Background
- Method of Analysis FFI TDO Tool
- Analysis of thirteen 300mm wafers
- The Crossover Formula
- What about skip row or skip row & column?
- Summary
- Does it really work?

When does it make sense to use a **Full Wafer Contactor??**

Probe Head

- Multiple sizes from 50mm to 150mm.
- Depending on the die can do:
 - Brick wall (no gaps between tested die)
 - Skip R or C (a 1 die gap in one direction)
 - Skip R & C (a 1 die gap in both directions)

Full Wafer Contactor (FWC)

- Touches the entire wafer at once (200mm or 300mm)
- DUTlet based system uses the same routing on all sites
- Initial cost is higher than PH, but ROI is worth it when parallelism is high enough.

But when is the parallelism high enough??

June 10 - 13, 2012

Terminology & Method of Analysis

Skip Row

• Skip R & C

300mm wafer, 2mm edge exclusion.

For each die size from: 4mm x 4mm to 12mm x 12mm: Run 4 analyses

- 1) PH Brickwall,
- 2) PH Skip R and PH Skip C
- 3) PH Skip R & C
- 4) Full Wafer Contactor

Analysis #1 – 8 DUTs in Parallel

300mm wafer, 10x10 die, 633 DPW

Probe Head

- -2x4, brickwall = 91 TDs
- -2x4, skip R = 93 TDs
- -2x4, skip R&C = 97 TDs

Full Wafer Contactor

7 skip R x 14 skip C= 120 TDs

Analysis #1 - 16 DUTs in Parallel

300mm wafer, 10x10 die, 633 DPW

Probe Head

- -2x8, brickwall = 49 TDs
- -2x8, skip R = 51 TDs
- -2x8, skip R&C = 54 TDs

Full Wafer Contactor

- -4 skip R x 10 skip C = 55 TDs
- 4 skip R x 9 skip C = 50 TDs(with 9 double touches)

Analysis #1 - 32 DUTs in Parallel

300mm wafer, 10x10 die, 633 DPW

Probe Head

- -4x8, brickwall = 26 TDs
- -4x8, skip R = 28 TDs
- -4x8, skip R&C = 31 TDs

Full Wafer Contactor

-4 skip R x 4 skip C = 25 TDs

Analysis #1 - 48 DUTs in Parallel

300mm wafer, 10x10 die, 633 DPW

Probe Head

- 6x8, brickwall = 18 TDs
- -6x8, skip R = 20 TDs
- -6x8, skip R&C = 23 TDs

Full Wafer Contactor

- 2 skip R x 5 skip C = 18 TDs (and uses only 42 DUTs)
- Or 16 TDs (with 2 double touches)

Analysis #1 - 64 DUTs in Parallel

300mm wafer, 10x10 die, 633 DPW

Probe Head

- -4x16, brickwall = 14 TDs
- -4x16, skip R = 16 TDs
- -4x16, skip R&C = 16 TDs

Full Wafer Contactor

1 skip R x 5 skip C= 12 TDs(and only uses 61 DUTs)

Sidenote:

300mm wafer, 10x10 die, 633 DPW

• 64 DUTs in Parallel

Probe Head

-4x16, brickwall = 14 TDs

#	TD Count	Probe Card Array	Probe Card DUTs
1	14	15 x 4	60
2	14	4 x 15	60
3	14	9 x 7	63
4	14	7 x 9	63
7	14	8 x 8	64
5	14	16 x 4	64
6	14	4 x 16	64

For each and every analysis – I run all possible rectangular combinations.
For example – in this case – 15x4, 4x15, 9x7, 8x8, etc. – all yield a 14TD design. In all cases I try to minimize the TD count with the maximum resources allocated (64 in this case).

Analysis #1 - 96 DUTs in Parallel

300mm wafer, 10x10 die, 633 DPW

Probe Head

- -8x12, brickwall = 10 TDs
- -8x12, skip R = 10 TDs
- 8x12, skip R&C = 12 TDs

Full Wafer Contactor

1 skip R x 5 skip C= 8 TDs(and only uses 91 DUTs)

Analysis #1 - 128 DUTs in Parallel

300mm wafer, 10x10 die, 633 DPW

Probe Head

- 8x16, brickwall = 8 TDs
- -8x16 skip R = 8 TDs
- -8x16 skip R&C = 8 TDs

Full Wafer Contactor

1 skip R x 2 skip C= 6 TDs(and only uses 114 DUTs)

Touchdown Efficiency

If TD Efficiency is < 100% PH is better If TD Efficiency is > 100% FWC is better

Example 1:

$$\#TDs_{PH} = 20$$

 $\#TDs_{FWC} = 23$

Example 2:

$$#TDs_{PH} = 22$$

$$#TDs_{FWC} = 18$$

TD efficiency = 22/18 = 122%

Analysis #1 (same as the last 7 slides condensed to a single slide)

300mm wafer, <u>8x8 die</u>, 1020 DPW 8 DUTs 16 DUTs 96 DUTs 32 DUTs 48 DUTs 64 DUTs **128 DUTs** solution 135 TD 72 TD 39 TD 25 TD **FWC** solution 40 TD 18 TD 12 TD 9 TD 24 TD The crossover point **TD efficiency PH vs FWC** 98% 117% 83% 104% 117% 122% 92% PH is better FWC is better June 10 - 13, 2012 **IEEE** Workshop

The Crossover Ratio

= Crossover Ratio

Example 1:

#DUTs = 32

 $\#TDs_{PH} = 64$

Crossover Ratio = 32/64 = 0.5

Example 2:

#DUTs = 32

 $\#TDs_{PH} = 16$

Crossover Ratio = 32/16 = 2

Analysis #1-13 — Brickwall vs FWC

300mm wafer, 4x4 die – 12x12 in 2mm increments, 8 DUTs – 128 DUTs

The Crossover Formula

If Crossover ratio > 1, FWC is better
If Crossover ratio < 1, PH is better

Analysis #14-26 - Skip R or C vs FWC

300mm wafer, 4x4 die – 12x12 in 2mm increments, 8 DUTs – 128 DUTs

The Crossover Formula (for skip Row <u>or</u> skip Column)

If Crossover ratio > 0.7, FWC is better If Crossover ratio < 0.7, PH is better

Analysis #27-39 – Skip R&C vs FWC

300mm wafer, 4x4 die – 12x12 in 2mm increments, 8 DUTs – 128 DUTs

The Crossover Formula (for skip Row and skip Column)

If Crossover ratio > 0.3, FWC is better If Crossover ratio < 0.3, PH is better

Summary:

A Few Simple Rules of Thumb

- When number of DUTs in parallel exceeds the number of touchdowns, a TrueScale Matrix product will give you better touchdown efficiency than a PH product.
- The larger the ratio of DUTs to TDs, the bigger the TD efficiency benefit.
- Use TrueScale Matrix when Crossover Ratio
 - > 1.0 for brick wall
 - > 0.7 for skip R or C
 - > 0.3 for skip R & C

Same Analysis on 200mm wafers

- Take any 300mm analysis and multiply die & wafer by 0.667
 - e.g. 10mmx10mm die on 300mm wafer analysis is EXACTLY the same as
 6.67mmx6.67mm on 200mm wafer crossover occurs at same point
 - Formulas work on 200mm and 300mm wafers

Analysis #40

200mm wafer, 6.67x6.67 die, 633 DPW

Additional Benefits of Matrix FWC

Electrical Performance

- Less crosstalk
- Better noise isolation
- More room for components

Force balance on chuck

Some probers are quite sensitive to off-center loading

Thermal Soak & Stability Performance

Card is nearly always over the chuck

Does it really work?

One final formula:

(with 3 different constants)

$$DPW = \eta * \# DUTs * \# TDs$$

When # DUTs = # TDs, crossover occurs. At the crossover point $\eta \approx 85\%$.

So:

#DUTs_{Brickwall Crossover} ≈ 1.1VDPW

#DUTs_{Skip R or C Crossover} ≈ 0.9 VDPW

#DUTs_{Skip R & C Crossover} ≈ 0.6VDPW

Return On Investment

- Using the 10x10, 64 site example:
 - Assume 1 min test time
 - Running for 18 months
 - Assume Test Cell Depreciation +Operating cost = \$240K/year (J750 or equiv.)
 - Assume overall equipment effectiveness = 75%
 - Assume revenue per wafer = \$2000
 - Model is for 1 test cell
- Compared to brickwall: efficiency was 17% higher = 42K vs 49K wafers

Return On Investment

- Using the 10x10, 64 site example:
 - Assume 1 min test time
 - Running for 18 months
 - Assume Test Cell Depreciation +Operating cost = \$240K/year (J750 or equiv.)
 - Assume overall equipment effectiveness = 75%
 - Assume revenue per wafer = \$2000
 - Model is for 1 test cell

Compared to skip R: efficiency was 33% higher = 37K vs 49K wafers

= 12,000 extra wafers extra wafers per test cell per test cell (480 FOUPs)

=\$119K less operating cost

=\$24M additional revenue

Thank you

Tim Henson
John Long
Shannon Collier
Michelle Griffing

