Floating Touchdown - New methodology for high parallelism testing driving test time reduction

Doron Avidar
Roy Cohen
F12 Test Engineering

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 10 - 13, 2012 | San Diego, California

Introduction

- High parallelism Flash testing on small densities (high DPW) requires multiple touchdowns to cover the wafer (due to limited tester resources)
- At each touchdown the tester waits till all sites complete testing before sending command to the prober to move to the next touchdown
- The "slowest" tester site will determine the test time at each touchdown
- Test time of a wafer is determined by the sum of the slowest site at each touchdown

Introduction - Cont.

- If we can eliminate the need to wait for the slowest site at each touchdown we will be able to save test time
- How can we break down this Tester Prober dependency?
- Lets try and save some test time by using Floating Touchdown

Floating TD concept

- Manufacture a FWC (Full wafer Contact) probe card
 - covering all DUTs with a single touchdown
- Built-in design of tester site sharing schematic that will enable to cover the wafer in 1 touchdown using the inherent max. tester parallelism
 - example: a wafer with 800 DPW and a tester with max. parallelism of $//144 \rightarrow$ each tester site will be split into 6 probe card sites (800/144 = 5.5 \rightarrow rounded to 6)
 - This is instead of using a //144 card that will cover the wafer in 6 touchdowns

//144 Tester sites shared into 6 probe card site each

Floating TD concept – cont.

- The testing of each tester site is done independently
- Each tester site will test it's shared probe card sites in a sequential mode (no parallel testing occur)
 - Floating TD is Electronic stepping (vs. Mechanical stepping)
- What happens to the test time?
- Remember current test time : SUM (MAX (TT/TD))
- Floating touchdown test time: MAX (SUM (TT/SITE))
 - In order for the test time of the Floating TD to be equal to the Current test time, need to have one tester site that will probe the 6 slowest DUTs on the wafer.
 - Chance for that in the 800 DPW ~ 1/26M

Current testing (FWA)

Wafer capture every 30sec

Floating TD testing

Wafer capture every 30sec

Test time comparison

Wafer capture every 30sec

Floating TD

23% TTR

Current

June 10 - 13, 2012

IEEE Workshop

implementation

- Sequential testing along the shared probe card sites
- Switch required to
 - Switch PS + Drivers + I/O
 - Each control will open/close all channels at the same time
 - Minimum number of controls (resource limitation)

Implementation

Current methodology

- Prober waits for tester command that all sites completed testing before moving to next TD
- DUT X/Y set by the prober
- Tester creates SiteLogs

Floating TD methodology

- Prober has 1 TD (initial X/Y)
- Require MultiDUT environment
- Test program handles all X/Y and SiteLog creation

Challenges on the way to FTD

Component complexity

- Component is required to handle high number of inputs/outputs (PS, Driver, IO)
- Minimum switch controls
- Number of components on the probe card

Signal integrity on switched channels

Signal from tester to DUT runs through multiple components

Test program complexity

Require to handle SiteLog and X/Y creation (instead of the tester)

Next steps

- Benchmark components for sequential testing
 - Input → PS, Driver, I/O
 - Output \rightarrow (1) DUT (2) next component
 - Min. control needed for switching
- Test program development
 - Handle sequential testing
 - Create X/Y
 - Create SiteLog independently
- Prototype
- Optimize test time reduction
 - What impacts the TTR?
 - How to achieve Max. TTR?

Summary

- Floating TD is a testing methodology aimed to save test time by overcoming the dependency of the Tester – Prober during the testing process
- Using your current test cell with a unique probe card site sharing of this methodology might save you up to 25% test time
- Floating TD is beneficial for designs with multiple touchdown count
- Complexity of implementation depends on the testing environment existing at your site

Thank You

Q?

