Wafer probe challenges for the automotive market

Luc Van Cauwenberghe
ON Semiconductor

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 10 - 13, 2012 | San Diego, California

Overview

- Automotive wafer probe requirements
- Results of experiments
- Summary
- Follow-on Work
- Acknowledgements

Automotive wafer probe requirements

Temperature

- -55°C up to 200°C
- Probed die deliveries: Full test coverage at probe
- Dual and tri-temp probe

Disturbed area on bond pad

- Multiple probe insertions
- Bond pad size reduction → smaller Si area
- Bond wire diameter in Multi Chip Modules

Impact of temperature on probe card

PCB temperature profile

Z movement of probes

X-Y movement of probes

PCB temperature

- Radient heat transfer
- Thermal expansion of the PCB dominates the mechanical behavior of the complete probe card assembly

	CTE XY (ppm/°C)	CTE Z (ppm/°C)
FR4	**	140 to 220
Rogers	11 to 16	46 to 50
N7000	10 to 12	2,5%
N8000	11 to 13	70 to 375

- Relays: typical maximum 85°C or 125°C
- Active components: typical maximum up to 125ºC
- Passive components: typical maximum 125°C to 150°C

PCB temperature evolution at hot

PCB temperature evolution at cold

Z movement of probes

Root cause

- Continuous moving heat source (chuck)
- Thermal behavior probe card assembly
- Build quality of the spider / probe head
- Independent of probe card type

Z deflection experiment: Initial conditions

- Soak prior to measurements
 - Prober soak: 2hrs after reaching set temp
 - Probe card soak: 10 min
 - After prober soak
 - Chuck centered under the probe card
 - No contact
- Zero-level = needle position after soak
- Process settings
 - Test time per wafer: 1hr 10min
 - Probe polish interval: every 100 die
 - Probe polish recipe: 25 touch downs, 20μm overdrive

Z deflection: standard probe card at 175°C

Z deflection: standard probe card at -50°C

Z deflection: High Temp probe cards at 175°C

Z deflection: ON Semi High Temp probe cards at 175°C

Z deflection: ON Sami High Tamp probagates 5

ON Semi High Temp probe cards at -50°C

ON Semi High Temp probe cards

- Patented design: US 7,816,930
- Bridge stiffener concept
- Allows PCB expansion without Z deflection
- Implemented on:
 - Teradyne uFLEX
 - Teradyne Catalyst
 - SZ M3650 & Falcon
 - Credence ASL1000

X-Y movement of probes

Root cause

- Build quality of the spider (cantilever)
- Build quality of entire probe card assembly
- Memory effect of the probes (cantilever)
- Thermal behavior probe card assembly

Experiment: X/Y movement Cantilever probe cards

Experiment: X/Y movement Vertical probe cards

Inspection limits 25 °C: +/- 7.5μm

Inspection limits High temp + Cold: +/- 12.5μm

Bond pad damage

- Key for probed die deliveries
- Max disturbed area
 - Diameter of entire probe mark area ≤ 28μm (≤615μm2)
- Probe depth
 - Maximum half of the thickness of top layer (T) of pad metallization
 - Maximum ≤ 500nm
- Number of probe marks
 - Number of probe insertions + 1

Experiment: Bond pad disturbance

Evaluation disturbed area and probe depth

Test conditions

- Temperature: 25ºC
- Touch count: 1
- Overdrive Cantilever: Typical production setting
- Overdrive Vertical: Max allowed overdrive

Max disturbed area (≤615µm2)

Probe depth (≤500nm or ½ top metal thickness)

Overdrive vs disturbed area

Cantilever (25µm tip diameter)

Vertical (10µm tip diameter)

Number of probe marks

- Probe mark ≠ Touch count
 - Probe mark: Individual visible imprint of a probe
 - ≤ Number of probe insertions + 1
 - Touch count: Number of touch downs on the bond pad
 - Top metal thickness ≤5500Å: max touch count =3
 - Top metal thickness >5500Å: max touch count =5
- Impact: Increased disturbed area
- Why multiple probe marks?
 - Dual or tri-temp probe
 - Multi DUT probe and re-probe
 - Data retention bake → pre and post bake probe

Probe card technology vs number of probe marks and disturbed area

- Multiple DUT probe with multiple probe insertions is only possible with advance probe card technologies
- The probe tip diameter selection is critical to comply with the max disturbed area requirement

Impact of touch count

Experiment on cantilever touch count

- Overdrive = 75μm (worst case)
- Increment touch count 1 to 7
- Thin top metal: thickness ≤5500Å

Conclusion:

- Cantilever:
 - Impact on probe depth and disurbed area (scrub)
 - Aluminum build up at end of scrub
- Vertical: main impact on probe depth
- Touch count ≥ 5 : Exposed Metal Oxide (EMO)

Cantilever probe impacts bond process

- Aluminum build up at end of probe mark
 - Build up amount driven by overdrive and touch count
 - Random height
- Intermetallics only formed at part of the bond area
- Potential risk: Bond ball lift at temperature

Summary: Temperature impact

Z deflection

- Dominated by PCB thermal behavior
- Best result at 175°C: 15μm
- Best result at -50°C: 10μm

XY movement of probes

- Cantilever:
 - Large differences depending on spider build quality
 - Difference between individual probes -> Swaying probes
- Vertical :
 - Determined by probe head design
 - All probes show similar movement \rightarrow Probe head drift
- Best result at 175ºC: 6μm

Summary: Bond pad damage

- Automotive requirements and multi DUT probe require more advanced probe card technologies
- Standard Cantilever probe cards
 - Disturbed area is very dependent on applied overdrive
 - Difficult to comply with automotive requirements
 - No Scrub[™] (Technoprobe) is a potential alternative
- Vertical probe cards
 - Probe tip diameter drives the disturbed area
 - Disturbed area is less dependent on applied overdrive
 - ON Semiconductor uses ROUTE 60 ™ LL (Technoprobe) for high temp
 - Combined with ON Semiconductor patented concept for high temp cards
 - High current carrying capability: 850 mA
 - Low pad damage
 - Life time (tip length)

Future work

- Wafer probe at 200°C
- Optimize Multi DUT probe recipes to reduce number of probe marks and touch count
 - Ongoing evaluation on impact of the probe card configuration
 - Ongoing evaluation of Multi DUT probe stepping pattern
- Analyze the influence of temperature on Contact Resistance (Cres)
- Analyze behavior of probe on Over Pad Metalization (OPM)

Acknowledgements

Frank De Ruyck

Equipment Engineer, ON Semiconductor

Wim Dobbelaere

Director Test & Product Engineering Automotive Mixed Signal,
 ON Semiconductor

Riccardo Vettori

R&D and Process Engineer, Technoprobe

Riccardo Liberini

Mechanical Design Manager, Technoprobe

Marco Di Egidio

Process Engineer , Technoprobe