FULL WAFER CONTACT BREAKTHROUGH WITH ULTRA - HIGH PIN COUNT

Takashi Naito
ADVANTEST

Daisuke Takano
ADVANTEST

Tsutomu Shoji
JAPAN ELECTRONIC MATERIALS

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 10 - 13, 2012 | San Diego, California

Overview

- Background
- Current Technology
- **VPCS (Vacuum Probe Contact System)**
 - VPCS + MEMS Probe
 - Design Considerations
- **■** Probe card Architecture
- **1TD Contact Procedure**
- Results
- Summary
- Next step

Background

450mm wafer is coming

- Increasing the number of die per wafer
- Strong requirement to reduce test cost
 - → 1 TD test is needed

Requirement for 1TD test

- Ultra high pin count probe card & prober are needed for 450mm wafer
- Utilize current probe card technology
 - Existing contactor
 - Similar specification to contact (force, scrub, overdrive, etc...)

Current Technology

- Ultra high contact force reaches as much as 1 ton
 - •1 ton is needed, 5gF x 200K pins at 450mm wafer
 - High stiffness for prober and probe card would be needed
 - Prevent deformation
 - Maintain planarity
 - → It would be heavier, bigger, more expensive!

VPCS "Vacuum Probe Contact System"

Initial Concept and Architecture

Advantage of VPCS + MEMS probe

Advantages of VPCS

- **Easily obtained uniform and high contact force**
 - 300mm wafer 576kgF, max 120K pin
 - 450mm wafer 1,297kgF, max 260K pin *-80kPa, 5gf/pin

- ■Because pressure is uniformly distributed over the tester and the wafer sides, a high stiffness structure is not required for prober and card
- **■**Easy coplanarity control
 - Wafer tray fit to probe card

Advantages of MEMS Probe

- **■**Proven technology
 - High repeatability & manufacturing productivity

HA5100CELL (Equipped with VPCS)

All-in-one test solution

- Combines a tester and prober
- 4 wafer parallel test solution

Design Considerations

- Vacuum-tight Control
 - Need structure to keep it vacuum-tight
- Overdrive & Tilt Control
 - MEMS probe needs OD control
 - Need probe protection
 - Need structure to maintain parallelism
- Preheat control w/o alignment chuck
 - Before probes touch, need Hi T/Lo T preheat control

VPCS Compliant MC* Structure Outline

Wafer side view of probe card

Tester side view of probe card

*JEM MEMS probe card

Probe

MEMS-probe

Low probe force

Stable probe contact

IC-Pin
Low load
Long stroke
Stable contact

Wafer Tray Docking Issues

How to vacuum the wafer tray to the space transformer (ST) surface in a conventional probe card structure?

1. To maintain vacuum a wide high-precision surface is needed in the outer ST area.

2. To limit the overdrive a stopper is needed.

3. To prevent probe damage from tilt, self-leveling is needed.

1. Secure Vacuum Tightness on ST Surface

2. Probe Protection

3. Tilt of the probe & wafer tray

How do we resolve these issues?

Introducing the Unit Holder

- 1. Polished fabrication on sealing area
 - → Secure vacuum tightness

- → Achieve probe protection
- 3. Mounting pre-load spring
- → Tilt control of the card & wafer Tray
- → Stable contact

Flatness fabrication of the holder surface

Preload Spring

Stopper

Probe Protection

Incorporate the stopper onto a unit holder which will secure the sealing area and is able to mount the stopper.

Wafer side view

Tilt Control

Using reaction force of the preload spring's stroke movement will correct the tilt of the wafer tray.

Structure of MEMS Probe Card

300mm VPCS + MEMS Probe

Preheat & Overdrive Control Method

Overdrive Control

 Probe overdrive is controlled by precise vacuum pressure control

- Preheat Control without an alignment chuck before probes touch
 - Spring F >Vacuum F Wafer tray weight
 - Hi T/Lo T preheat control without alignment chuck is possible

Structure of Wafer tray

300mm VPCS + MEMS Probe

1TD Contact Procedure (1/4)

1TD Contact Procedure (2/4)

1TD Contact Procedure (3/4)

Probe card is preheated by the heater installed in the wafer tray

- Probes do not contact the wafer
- •Wafer tray is contacted to the probe card with minimum vacuum pressure

1TD Contact Procedure (4/4)

Probes contact the wafer by further decompression

- Probes are protected by the stopper from over stroke
- Vacuum pressure is adjustable depending on probing force

Probe Contact

Stopper

Scrub Mark

Overdrive Control & CRES (Ambient)

OD	20μm (-5.5kpa)	40μm (-7.2kPa)	60μm (-8.9kPa)	80μm (-10.6kPa)	100μm (-12.3kPa)
VPCS					
Prober	9	3			

Results

 Proved that the same OD control as a prober is possible with VPCS

•CRES < 1.8 ohm

*Cres is the path resistance including connection from interposer to the probe tip

Overdrive Control & CRES (85deg C)

OD	20μm (-5.5kpa)	40μm (-7.2kPa)	60μm (-8.9kPa)	80μm (-10.6kPa)	100μm (-12.3kPa)
VPCS				3	
Prober					3

Results

- Proved that the same OD control as a prober is possible with VPCS
- •CRES < 1.3 ohm

*Cres is the path resistance including connection from interposer to the probe tip

Overdrive Control & CRES (-30deg C)

OD	20μm (-5.5kpa)	40μm (-7.2kPa)	60μm (-8.9kPa)	80μm (-10.6kPa)	100μm (-12.3kPa)
VPCS		7		3	
Prober				•3	3

Results

- Proved that the same OD control as a prober is possible with VPCS
- •CRES < 2.3 ohm

*Cres is the path resistance including connection from interposer to the probe tip

2

Summary

- Easily obtained uniform and high contact force
 - 300mm wafer 576kgF, max 120K pin
 - 450mm wafer 1,297kgF, max 260K pin
 *-80kPa, 5gf/pin
- Because pressure is uniformly distributed over the tester and the wafer sides, a high stiffness structure is not required for prober and card
- Realized full wafer contact by VPCS + Existing MEMS probe
 - Achieve Probe overdrive control by VPCS
 - Proved using existing MEMS which is advantageous on reliability and cost

VPCS + MEMS is a powerful solution for 450mm wafer 1TD test

Next step

450mm Full wafer contact

- Over 1ton contact force for ultra high pin count
- Enhancement of resolution and precision of vacuum is required for finer overdrive control
- Minimum deformation needed to have uniform scrub mark
- To what extent can the board stiffener be eliminated or shrunk

