# Cu-Pillar Bump Probing: Utilizing a 50µm Pitch Fine Pitch Vertical Probe Card Technology





Senthil Theppakuttai, Ph.D.

**SV Probe** 

**Todd Tsao** 

**ASE Global** 



IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 10 - 13, 2012 | San Diego, California

#### **Outline**

- Introduction to Fine Pitch Copper Pillar Bumps
- Testing/Probing Requirements
- Test Vehicle Design
- Probe Card Challenges
- Test Data
- Summary



#### Introduction

- Next Generation Flip Chip Interconnects
  - 2.5, 3D Integration Process
- Electroplated Copper Pillars with Solder Caps
- Advantages
  - Fine Pitch Capability
  - Increased I/O Density
  - Improved Electrical & Thermal Performance
    - Superior Electro-Migration
  - Higher Reliability at Lower Cost

#### 3D IC Test Challenges



- Wafer Probing
  - · Thinned wafer handling
    - ◆ Grinding before/after test
    - Assembly flow vs. Test
  - TSV test
    - TSV defect
    - Double-sided wafer probing?
  - Die/wafer contact interface material
    - Bond pads/ micro bumps/ TSV
    - Cu pillars
  - Contact force of high I/O number vs wafer thickness
    - ◆ Probe Force
    - Probe material
  - Fine Pitch
    - Area array pitch < 50um</li>
    - > 1000 contacts



Fundamental Study Capability Is Required Jointly between Assembly and Test





# **Testing/Probing challenges**

- Probe Card Requirements
  - P/C Required at 50μm & Below in Array
    Configuration
  - Small Bump Diameter
    - Need Very Low Probing Force
    - Need Very Good Tip Alignment
  - Need Probe Compliance to Accommodate Bump to Bump Variation Across Wafer

## Goals/Objective

#### Evaluation Objective/Scope

- Probe Card Feasibility at 50μm Array
- Copper Pillar Bump Probing Evaluation
  - Bump Damage Assessment
  - Electrical, Thermal & Mechanical Characterization

#### Test Equipment

- Test Chip by ASE
- LT50 Probe Card by SV Probe
- P-12 XLn Prober, HP93000 Tester
- Microscope, SEM, Veeco Profilometer

# **Equipment Utilized**











# **Test Chip Design**

- Test Chip Design Details
  - 50μm Pitch
  - Array Configuration, 4 Groups, 500 Points Total
  - Daisy-chain Resistance Measurement

#### **Array Layout**



#### **Optical Picture**



## **Cu-Pillar Structure**



*Initial Bump Height: ~25 +/-3μm* 

## LogicTouch<sup>TM</sup> Vertical Probing Technology



- 1. Probes / PH
- 2. Space Transformer
- 3. PCB



- Technology Capable of Probing 50μm Arrays
- Technology Scalable to 40μm Pitch



## **PROBE CARD CHALLENGES**

## **Scalability Challenges**

- Space Transformer Availability at 50μm Pitch Array
  - Based on Standard Thin Film Technology Capability, Difficult to Achieve Escapement Required for Routing
  - Need Pad on Via at Pitch & Hence MLC/MLO not Feasible for Array Configurations at 50µm Pitch
  - New Type of Interconnect was Developed Internally the Modular Space Transformer or MST<sup>TM</sup>



# **Scalability Challenges**

#### Guide Plate Wall Strength

- Reduced Wall Strength due to Reduced Wall Thickness due to the Spatial Constraints at 50µm Pitch
- Probes Designed to Minimize Loading on Guide Plate (FEA)
- Stress/Life Tests at Max OT to Ensure Wall Integrity





# **Guide Plate Reflectivity**

- The MEMS Guide-plates Used in LT50 Probe Cards have a Smooth & Polished Surface Finish
  - Lighting Adjustments may be Required During Probe Card Setup at PCA & Prober
- Various Anti-reflective Surface Treatments were Evaluated to Reduce Normal Reflection
  - Surface Scattering (Textured/Engineered Surface)
  - Interference (Thin Films/Coatings)

**Veeco Reflectivity Measurement** 



P-12 Prober





P-12 Prober Pictures: High Mag, Light Level 120, Focused 7-8 mils above Die Surface

## PROBE CARD DATA



## **Probe Force**

- Contact Force of 2.5 gf @ 50μm OT
- - Minimize Bump Damage
  - Accommodate Bump Co-planarity Across Wafer



# **Tip Alignment**

Probe Tip Alignment – 0.3 mil Radial





# **Planarity**

• Probe Planarity < 0.5 mil (12μm)





### Resistance on Gold

 Max Total Resistance is 3.2 Ohms (includes Cres & Path Resistance through PH, ST & PCB)





## **COPPER PILLAR BUMP PROBING**

## **Test Method**







**Daisy Chain Bump Structure** 

June 10 - 13, 2012



IEEE Workshop

## **Probe Mark**





#### **After Contact**



\*Over-Drive: 40μm

# probing: 2 TDs

**Probe Mark Area Under 30%** 



#### **Tests in Process**

#### Electrical Tests

Cres, Leakage Characterization vs. OT, # TD

#### Mechanical

- Probe Mark Size Characterization vs. OT, # TD
- Bump Damage Assessment vs. OT, # TD

#### Thermal

- Effect of Temperature (Hot, Room & Cold) on:
  - Probe Card Performance (e.g. Cres Stability, Cleaning etc.)
  - Probe Mark / Bump Damage

# **Summary / Conclusion**

- To Address Test Challenges Associated with Fine Pitch Copper Pillar Bump Probing
  - A Test Chip with 25μm Pillar Bumps at 50μm Pitch Array was Designed & Fabricated
  - An LT50 Probe Card at 50μm Pitch Array was Designed & Built with SV Probe's Proprietary ST Technology
- Test / Evaluation
  - Probe Card Feasibility at 50µm Array Verified
  - Good Probe Card Tip Alignment & Planarity
  - Max Total Resistance through P/C was 3.2 Ohms, avg 1.7 Ohms
  - P/C Passed Opens/Continuity Test on Copper Pillar Bumps
  - Probe Mark was < 30% of Bump Area at 40μm OT at 2 TDs</li>
- Successful Collaboration between ASE & SV Probe & the Preliminary Evaluation Results to Date have been Positive