3D profiler for contactless probe-card inspection

Rob Marcelis

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 10 - 13, 2012 | San Diego, California

Content

- Introduction
- Objectives
- Challenges
- Basics
- DOE
- Results
- Data transformation
- Advantages/disadvantages
- Summary conclusions
- Follow-up work

Introduction BE precisions technology

- Dutch based company
- Founded 2000
- 20 employees
- WW sales network
- Main focus: probe-card analysis tool
 - Optical, Electrical, 3D laser

Objectives

- Provide process and quality improvements
- Probe-card screening tool
- Create a quick way to check contactless the mechanical condition of MEMS probe-cards
- Present the outcome in a user friendly GUI
- Re-use as much as possible existing systems parts
- Avoid a tester-platform dedicated motherboard
- Good ROI

Challenges

- Speed
 - Inspect < 1 pin/sec</p>
- Accuracy
 - Better then $+/-3 \mu m$
- Parallelism
 - Better then +/- 3 μ m

Basics

- Why needle inspection?
 - Ware
 - Tip diameter and shape
 - contamination (debris)
 - Mechanical damage
 - caused by handling
 - caused by process (fritting; needle stuck to bond-pad or cleaning)
 - •Gram-force
 - Electrical characteristics verification
 - Cres
 - Leakage
 - Wire check
- Probe-cards get more complex and more expensive

Basics

- What is normally tested by probe-card analyzer?
 - Planarity (Z)
 - Alignment (X/Y)
 - Air image
 - Contact image @ normal overtravel
 - Scrub length, Scrub angle
 - Entire spider angle
 - Cres
 - Leakage (with and without contact pressure)
 - Gram-force
 - Probe-card electronics (relay's and other components)
 - Wire check

For the gray items a probe-card electrical test system is required incl. motherboard

Methods for 3D analysis

Optical

- 2 camera
 - Resolution
 - calibration
- Interfero-metrology
 - Complex
 - expensive

Laser

- Spot laser
- Line-scan laser

Critical parameters

- Stage-base flatness
- Parallelism between stage-base & probe-card
- Resolution (dot size of laser beam)
- Scan time
- Reference file, containing probe-card data

Design Of Experiment

- X/Y/Z stage
- Laser head
- Ceramic substrate with dots

System buildup

- Existing stage of M3 analyzer
- Additional probe-card holder rack
 - − Parallelism to stage < 3 µm
- Mounting bracket for laser head
- Interpretation and representation SW

System build-up

System build-up

Stage performance

 Position accuracy within 2 μm over multiple runs. (position error to mapping glass)

Overall stage flatness <4 μm over used travel area

Laser specifications

- 2 μm spot
- Confocal displacement measurement system
- Scan in Z and X direction
- Resolution of 0.01μm
- Max scan line 1.1 mm

Scan motion

Reference substrate

Reference substrate

- 4" square ceramic substrate with ink Dots
- +/- 50 μm Ø & +/-35 μm high
- 120 μm grid
- Better then 2 µm flatness

1st trials

Confocal Spot laser results

- 2 µm spot
- Moved in X/Y in the area where pin suppose to be
- 120 μm X 120 μm area with 5 μm grid
- Time required little over 100 sec/pin (scan area)

Line-scan confocal laser

- 2 suppliers
- Due to big price difference focused on 1 supplier
- Stage movement in X direction
- Laser head scanning in Y direction
- Same 120 μm X 120 μm area with 5 μm grid scan area
- Time required just under 16 sec/pin

2th trial

Line-scan confocal laser

- Stage movement in X direction
- Laser head scanning in Y direction
- 550 µm scanline
- 5 µm increments
- Time required just under 4 sec/pin

Results; digitized image

2st trials results

Aver.0.690

Aver. 0.024

Aver.0.859

Results Small mems probe head

Results; 3D Repeatability data

Aver. 2.676

Aver. 2.534

Aver. 0.632

June 10 - 13, 2012

Results traditional analyzer

Aver. 2.271

Aver. 2.358

Aver. 1.632

June 10 - 13, 2012

IEEE Workshop

Results

- Comparison traditional & 3D data of mems card
 - Most remarkable planarity differences
 - contact resistance, discrete motor steps
 - Same range 14 um!
 - X & Y look very similar

Aver. 0.632

Aver. 1.632

June 10 - 13, 2012

IEEE Workshop

Results planarity cantilever

Aver. 1.261

Aver. 1.046

IEEE Workshop

Data transformation

- 3D picture is nice to look at! but do we know if what we look at is all ok?
- Get the laser data linked to probe-card data.
- Use existing analyzer GUI
 - Position error in X/Y
 - Z-height
- Comparison to probe-card spec's

3D data in GUI

Probe-card data in GUI

3D data in GUI

Possible probe-card types

Probe-card type	3D screening	added value	remarks
Cantilever	+	+/-	Proven
vertical	+ /	+/-	"hanging" probes
MEMS	++	++	no vision upgrade needed
APT	+++	++	Bi-level probe heights

- Advantages / disadvantages
- **Contactless**
- **Accurate (debris visible)**
- No expensive MB needed
- **Quick set-up**
- Measurement data of all pins in X/Y/Z
- **Comparison with probe-card** specifications (pass/failindication)
- **Good ROI**

- No electrical characteristics:
 - Cres
 - Leakage
 - Wire check
- No scrub analysis
- Dimensions of laser head
- No repair guidance

Summary/Conclusions

- 3D contactless profiling works for mechanical position verification of contact-pins
- Easy add-on for existing probe-card analyzer
- 3D profiler with laser head is as accurate as basic system (higher res. in Z)
- 3D results import in "normal" analyzer for repair and electrical verification
 - Save time (not necessary to analyze entire card)
- When inspection results are stored per card after each run, a probe-card behavior becomes visible

Follow-up work

- Speed improvements
- Accuracy improvements
- Investigation to add laser-head to wafer prober
- 3D-OEM package for integration
- Investigate use for final test sockets inspection

Thanks for your attention

Any questions?

