Case Study: Integrating a 300mm probing solution with a diagnostic Emission Microscopy tool (Meridian WaferScan)

Richard A. Portune

Senior Systems Engineer

Email: rick portune@dcgsystems.com

Kevin Eseltine

Senior Mechanical Engineer

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 10 - 13, 2012 | San Diego, California

Overview

- Background Meridian System
- WaferScan Mechanical Description
- Wafer retention
- PTPA
- Tester Interface
- Landing model
- Lessons learned from the Field
- Moving Forward

Background

- DCG Systems manufactures infrared-based microscopy tools for FA, Design/Debug & Yield Learning activities
- Central to these is the silicon property which renders it virtually transparent to the NIR spectrum.
- Traditionally, a packaged part is decapped, socketed, and turned face-down for inspection and data collection by upward-looking optics

Meridian System

Meridian System

Major Development Requirements

200mm/300mm Wafer capability
Maintain system footprint
Minimal system height impact
Preserve packaged part capability
Maximum Probe force 45kg

Accommodate probe cards up to 18" diameter System Controller remotely located in E-Rack

Optics Table

Optics Table

Prober Motion

Traditional Implementation

- Stationary probe card.
- 4-Axis motion is handled in the forcer.
- All probe mechanics live below the table top.

WaferScan Implementation

Z Motion

X/Y Motion

Theta Motion

Stationary Wafer and Moving Probe Card

Linear Motors mounted at table top

Rotating Probe Card

X/Y Wafer Motion

Air Table

Vacuum Ports

X Linear Motor

Y Linear Motor

X/Y Shuttle

Wafer Retention

Wafer Retention

Probe Card Z plus Theta

Z Elevators placed within system frame so no impact on system footprint

Z Elevators

Probe to Pad Alignment

Issues

- Obscured visibility in vertical probe cards
- Limited access space in gap between wafer and PC

Solution*

 Utilize high precision Meridian camera system for "optical metrology" to measure angles and displacement of wafer and probe card

* US Patent **8159243**

PTPA Process

Capture backside image through device

Overlay CAD topside information

Wafer angle offset captured by CAD placement in overlay

PTPA Process

Capture Probe Card image

Correct PC theta angle to match die

Match PC pins to die landing targets

PTPA Process

Final Wafer X/Y adjustment to bring die into aligned position

Tester Interface

- Probe Card mounts in moving platen
- Flexible Interface between stationary test head and moving probe card
- Test Head vibration is decoupled from probe card

Probe landing model

- Landing Site is unsupported
- Probe force causes wafer bowing
- Traditional landing model requires revision for WaferScan applications
- "Effective Overdrive" will always be less than mechanical overdrive value

Probe Landing

Measured Wafer **Deflection**

> Full thickness 300mm wafer, 27 x 27mm window 6000 pin vertical probe card with 150um overdrive Edge deflection 30um Deflection variation at center as much as 60um

Probe Landing Model

Lessons learned from the field

- Cantilever probe cards provide the biggest challenge to PTPA
- CAD information not always available
- Higher levels of automation required
- Higher probe force
- Direct Probe gaining in popularity
- Multi-site probing

Moving Forward

- Next generation of WaferScan to move closer to in-line applications
- Much higher probe force
- Higher levels of automation with integrated pattern recognition for alignment and die-todie stepping
- Automated data collection across the wafer

"It's always Something"

Thank You!