Approaches for Reducing the Cost of High Pin Count Probe Card Test

John Strom
Jeff Greenberg
Rudolph Technologies

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 10 - 13, 2012 | San Diego, California

Introduction

- High load probe cards in the test cell typically require
 - Prober that can apply a large force (up to 450kg)
 - Prober that is structurally stiff (\$\$\$)
 - Tester Interface that is structurally stiff (\$\$\$)
- Testing the probe card on the Probe Card Analyzer (PCA) – historically we tried to emulate Test Cell
 - PCA needs to apply a large force (\$\$\$)
 - PCA needs to structurally stiff (\$\$\$)
 - Probe Card Interface (PCI) that emulates (\$\$\$)
- Is there a PCA test strategy that is more cost effective?

Challenges of High Load Probe Cards — Probe Card Vendors

Challenges of High Load Probe Cards – IDMs

Introduction

- Challenge
 - High parallelism (1TD 300mm)
 - Thermal deflection
 - High probe count
 - Shrinking bond pads
- Can we maintain the same probe card planarity specification as 32x to 64x parallelism five years ago??
 - Yes!
- Micron has employed techniques for analyzing optical and electrical planarity data; resulting in...
 - Improved test cell performance
 - Better understanding of high parallelism probe card planarity characteristics
 - Correlation between metrology and test cell tools

June 8 to 11, 2008

IEEE SW Test Workshop

Caldwell, 2008

Micron Technology

2

XL Multi-DUT Probing Challenges

- Very large effective probing area :
 - Requirement for a large area contact uniformity through control of Alignment, Planarity and Test-Head deflections.
- High thermal sensitivity:
 - Probe-Cards have to be operational within the required Temp' Range of test.

June 10 - 13, 2012

Dabit, Nguyen, 2005 Intel

Challenges of High Pin Count Cards – PCA Vendors

Motivation

- Ever increasing need to test more devices simultaneously
- · Probe card pin counts and loads increasing
 - Advanced Technology Cards with > 10,000 probes
- Test Time
 - Need to keep test times acceptable
 - Minutes, not hours
- Accuracy
 - Increased loads cause structural deflection and degrade accuracy
 - Tighter probe pitch and smaller pads require higher accuracy

Greenberg, Kraft, 2003 API

AppliedPrecision
Enabling the world's core technologies

HIGH PROBE FORCE

- IS IT POSSIBLE TO CHARACTERIZE THE SYSTEM DEFLECTIONS?
 - PROVIDING THE METROLOGY TOOL IS REPLICATING THE TESTER INTERFACE IT MAY BE POSSIBLE
 - BUT ITS UNLIKELY EACH TEST PLATFORM, PROBE COUNT, PROBE CARD, STIFFENER, WAFER PROBER, ... WOULD NEED TO ADDRESSED

Schwartz, McLaren 2007 ITC

ITC's Design Guidelines

- Emulate Tester Mechanical Conditions
- Same Forces on Probe Card
- Same Connector Control Methods
- Emulate Wafer Prober Card Holding Conditions
- Same Forces on Probe Card
- Maintain Same Reference Surface
- Requires detailed information from test system manufacturer and custom hardwa

McLaren, 2010 ITC

Probe Card 1: Planarity

Loaded Planarity

Deflection

- Deflection of probe card from no overtravel until all probes are touching ~ 4 microns
- · Low probes showing no deflection

Doe, 2008, Rudolph

High probes drift up as the probe card is overtraveled.

The Probe Card Analyzer M5

• Manager 5

Beijert, 2011

The facts of the M5

- Z-force 600 kilo pressure
- Accuracy in Z 0.1 micron
- Alignement 0.1 micron
- Cres 10 Milli-ohm
- Leakage 0.1 Nano-Amp
- Motherboard size max. 1.2 meter
- · Total max. probe pressure 600 kilogram force
- Channel count > 100K

chamici count > 100

Challenges of High Load Probe Cards Cost of Probe Card Test

The past

- Low probe card pin counts and low channel counts
- Simple PCIs with costs of \$10's of thousands of \$\$
- P&A measurement non-impacted by probe card load
- Probe Card Analyzer costs contained

Today (for high pin count cards)

- High probe card pin counts with corresponding high forces
- Complex PCIs which cost \$100's of thousands of \$\$
- PCA costs driven by requirement for high system stiffness
- Customers are suffering from high cost of probe card test
- PCI costs may prevent probe card vendors from entering some markets
- How do we reduce the cost of probe card test?

Impact of Probe Card Load on Test Cell

- System deflection cause the actual overtravel to be less than what is programmed
- Need to increase prober's programmed OT to achieve probe card designed OT
- Programmed OT (POT) vs. Actual OT (AOT) is a function of probe card total spring rate and "<u>system</u>" spring rate (stiffness)

Prober Planarity Measurement Methods

System deflection can be seen in the "First to Last" Planarity data

Loaded/F->L **Unloaded System Deflection Probes** Chuck Camera - Measure Z position of probes where they first contact chuck System deflection causes high probes to **Measure Z position of probes with** drift up -- Planarity data gets camera in free hanging space "stretched" (Unloaded) Loaded

Unloaded

Probe Card Performance on a Prober Loaded Planarity vs Unloaded Planarity

 Loaded Planarity range is a function of probe card total spring rate, system stiffness and unloaded planarity range

10K probes at 0.1gm/um

Probe Card Load = 1kg/micron System Stiffness = 0.5kg/micron Unloaded Planarity range = 10um Loaded Planarity range = 20um

10K probes at 0.1gm/um

Probe Card Load = 1kg/micron System Stiffness = 0.5kg/micron Unloaded Planarity range = 20um Loaded Planarity range = 40um

40K probes at 0.1gm/um

Probe Card Load = 4kg/micron System Stiffness = 1kg/micron Unloaded Planarity range = 10um Loaded Planarity range = 30um

Lowest probe → Highest probe

Lowest probe → Highest probe

Lowest probe → Highest probe

Probe Card Performance on a Prober Planarity: Unloaded Pitch/Roll vs. Loaded Pitch/Roll

Probe Card probes: 10K at 0.1gm/um

Probe Card Load : 1kg/micron
System Stiffness: 0.5kg/micron

Unloaded Planarity range: 0um
Unloaded Card Pitch/Roll Error: 15um
Loaded Card Pitch/Roll Error: 30um

Loaded Planarity method can exaggerate probe card tilt

Probe Card Performance on a Prober

- What happens to the actual scrubs produced on the wafer?
- Does linear system deflection affect the uniformity of the scrubs? **EXAMPLE**:
- Probe card Scrub ratio = 0.5 : (i.e. 50u actual OT produces 25um scrub)
- 15um Programmed → 10um Actual OT
- Probe card has 10k probes, analyze 2 particular probes
 - Unloaded planarity difference = 10um, implies <u>5um</u> scrub length differential
 - Loaded planarity difference = 15um, , implies <u>7.5um</u> scrub length differential

How will these scrub marks change with system deflection?

Probe Card Performance on a Prober

• Scrub marks on bond pad with perfect "zero" deflection system

Zero OT

 $P_1 = 0$ um scrub

 $P_2 = 0$ um Scrub

After 10 um OT

 $P_1 = 5$ um scrub

 $P_2 = 0$ um Scrub

At Full OT

 $P_1 = N um scrub$

 $P_2 = N-5$ um Scrub

• What happens to the actual scrubs produced on the wafer with system deflection?

After 15 um OT

 $P_1 = 5$ um scrub

P₂ = 0 um Scrub

 $P_1 = N \text{ um scrub}$

 $P_2 = N-5$ um Scrub

- **Unloaded** planarity correlates to scrub uniformity
- Unloaded planarity also correlates to probe force uniformity

PCA Test Strategies

- Understanding how the card behaves in the test cell....
 - Unloaded planarity correlates with the uniformity of scrubs
 - Programmed OT ≠ Actual OT for high load probe cards
- What is a cost effective test strategy for high load probe cards on a Probe Card Analyzer?
 - Planarity measurement method
 - Alignment measurement method
 - Probe Card Interface (PCI) design

Test Strategies -- Planarity

- Purpose of Good Probe Card Planarity
 - Produces consistent contact
 - Helps produce uniform scrub marks on bond pads
 - Helps produce uniform probe force
 - Avoids punch through
 - Even probe wear for the life of the probe card

Planarity Measurement Methods – Unloaded / Loaded

- Measure Z position of probes in free hanging space
- No System Deflection
- Z Measurement Techniques
 - Optically via 3D-OCM (PWX)
 - Electrical conductive post (PWX, VX4)
 - Optically via best focus position (WWX)

- Measure Z position of probes where they first contact chuck
- System deflection causes high probes to drift up -- Planarity data gets "stretched"

Loaded

Unloaded

Planarity Test Methods -- Loaded and Unloaded

Loaded Planarity

- Exaggerates planarity signature
 - Makes life more difficult for Probe Card manufacturer to meet planarity spec
- Planarity values are dependent on PCI/system stiffness
 - Potential correlation issues due to system deflection differences
- Does not scale with pin count/ load
 - PCA upgrades needed over time as probe card loads increase
- <u>High cost of probe card test</u>
 - Requires expensive PCA to provide system stiffness
 - Requires expensive PCI to (try to)
 emulate test environment

Unloaded Planarity

- Measures true planarity of probe card
 - Correlates to the uniformity of scrub marks and probe force on wafer
- Planarity is independent of PCI/system stiffness
 - Better correlation between different unloaded measurement systems
- Scales with pin count/load
 - No PCA changes needed for Unloaded
 Planarity as probe card load increases
- Reduced cost of probe card test
 - PCI cost to measure unloaded planarity can be much lower
 - PCA cost to measure unloaded planarity could be much lower

Which Planarity method should I use?

 Unloaded Planarity will provide the most information at the lowest cost of test

Test Strategies -- Alignment

Purpose of Good Probe Card Alignment

- Ensure probe is positioned correctly to for initial contact with the pad/bump
- Ensure that the probe moves to the correct position on bond pad at designed/actual overtravel
- Helps minimize bond pad damage
- Helps ensure that probe does not scrub off bond pad

Alignment Measurement Methods – Unloaded / Loaded

- Measure NT/OT positions with camera/window raised above chuck
- Overtravels only a few probes at a time causing negligible "system" (PCA/PCI/Probe Card) deflection
- Actual OT = Programmed OT

- Measure NT and OT position with camera/window co-planar with chuck
- Probes produce large load at OT position causing "system"
 (PCA/PCI/Probe Card) deflection
- Actual OT = Programmed OT –"System" Deflection

June 10 - 13, 2012

Alignment Test Methods -- Loaded and Unloaded

Loaded Alignment

- Accuracy of AOT is unknown
 - AOT = POT "System" Deflection
 - What POT to test at?
- Alignment measurements are dependent on PCI/system stiffness
 - Difficult to get high accuracy and correlation of measurement
- Does not scale with pin count/ load
 - PCA upgrades needed over time as probe card loads increase
- High cost of probe card test
 - Requires expensive PCA to provide system stiffness
 - Requires expensive PCI to (try to) emulate test environment

Unloaded Alignment

- Accurate of AOT
 - AOT=POT
- Alignment measurements are independent of PCI/system stiffness
 - Better correlation between different unloaded measurement systems
- Scales with pin count
 - No PCA changes needed for Unloaded
 Alignment as probe card loads increase
- Reduced cost of probe card test
 - PCI cost to measure unloaded alignment much lower
 - PCA cost to measure unloaded alignment could be much lower

Which Alignment method should I use?

 Unloaded Alignment will provide the best information at the lowest cost of test

Test Strategies – PCI Design

- Emulate tester interface mechanically and electrically
 - Highest cost
 - Industry standard method, but the accuracy of emulation often unknown
- Simplified tester interface mechanically and/or electrically
 - Reduced cost is enabled by unloaded Planarity and Alignment measurement
 - Does not attempt to emulate the test environment stiffness
 - Requirements for parallelism of probe card during test can be loosened
 - Can further reduce costs with electrical simplification low channel count PCA and heavily bussed PCI

Test Cost vs Test Coverage

- Emulate tester interface mechanically and electrically
 - Highest cost

	"Emulating" PCI
Test Coverage	Fully routed
Planarity	YES
Alignment	YES
Full leakage	YES
CRES	YES
Wirechecker	YES
Probe Force	YES

Test Strategies – PCI Design

- Use simplified PCI mechanics
 - Unloaded Planarity and Alignment enables low cost PCI by eliminating need for system stiffness

	Simplifed P
Test Coverage	Fully Route
Unloaded Planarity	YES
Unloaded Alignment	YES
Full leakage	YES
Unloaded CRES	YES
Wirechecker	YES
Probe Force	YES

Case Study: Emulating PCI vs Simplified PCI Loaded Planarity

- Emulating PCI = Very stiff, Simplified PCI = Less stiff
- Direct Dock Probe Card –~5000 probes, moderate load
- Loaded Planarity ranges 12um -18um due to PCI stiffness differences
 - Differences will increase as probe card loads increase!
- Results are dependent of probe card load and system stiffness

Case Study: Emulating PCI vs Simplified PCI Unloaded Planarity

- Emulating PCI = Very stiff, Simplified PCI = Less stiff
- Direct Dock Probe Card Moderate load ~5000 probes
- Unloaded Planarity range is only 8um and is the same for both PCIs
- Results are independent of probe card load and system stiffness!

Case Study: Emulating PCI vs Simplified PCI Unloaded Alignment

- Emulating PCI = Very stiff, Simplified PCI = Less stiff
- Direct Dock Probe Card Moderate load ~5000 probes
- Unloaded Alignment is the same for both PCIs
- Results are independent of probe card load and system stiffness!

Summary

- Customers are demanding reduced cost of probe card test
- Probe card test costs can be significantly reduced by taking advantage of <u>unloaded</u> measurements with appropriately simplified PCI designs for these measurement techniques
- Unloaded measurements can provide more meaningful information than loaded measurements about probe card performance in a test cell
- Unloaded measurements scale with probe card pin count and don't require PCA system changes as probe card loads increase

Acknowledgements

- Bill Favier, Rudolph Technologies
- Ryan Shan, Rudolph Technologies

