

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 9 - 12, 2013 | San Diego, California

High Frequency PCB Material Characterization and Simulation

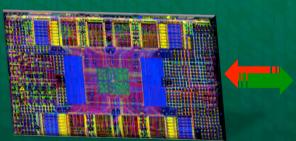
Jason Mroczkowski

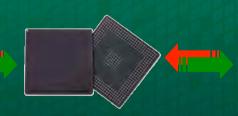
Signal Integrity Product Development Manager

Overview

- Background
 - Characterization, Simulation
- PCB Material Project
 - Overview and Results
- Discuss leading loss drivers
 - Dielectric properties
 - Copper Roughness
- Summary

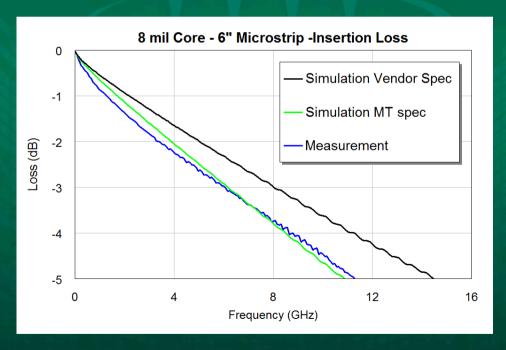
Background


- Previously PCB vendors asked to control impedance
 - 50 Ohms +/- 5%
 - 100 Ohms +/- 10%
- Today PCB vendors asked to control loss
 - More involved
 - Er, etch, core thickness, roughness, discontinuities, weave, etc
- Need to understand PCB characteristics to detail not previously required to predict PCB performance


Simulation

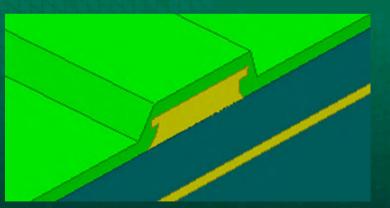
- Multitest has run test interface simulations for about a decade
- Simulation provides confidence that the interface is designed correctly the first time
- Simulations include any or all of the following:
 - PCB (vias, components)
 - Contactor

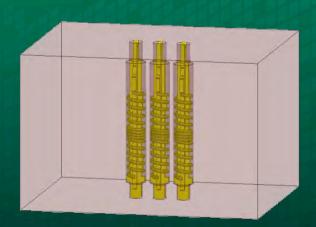
- Package
- Device



246 HSPITS OF SILE -- PET NYUGRO PyA STANGHU -- OFFICE ACCUMENTED RASTI MILTEST-0 DIEF-3 XXVIII 1 3.96541-4 C-100 MRIJUG 13 1.00 U-Um - 8.140039990399977 -- TPAH 1.0000000-11 1 0.000000-007 STANT - 0.3000004-000 -- OFFI 1 000-11 1 2 3 4 1 6 7 8 -- OFFI 1 000-11 2 3 4 1 6 7 8 -- OFFI 1 000-11 2 3 4 1 6 7 8 -- OFFI 1 000-11 2 3 4 1 0 7 8 -- OFFI

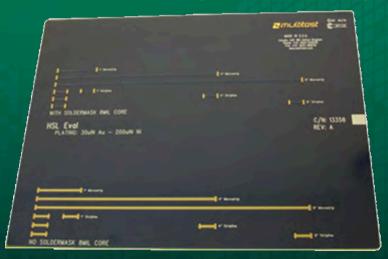
Simulation vs. Measurement


- Results show importance of characterization to correlate simulation and measurement
 - ~1dB difference at 10GHz



Importance of Characterization

- Reliable simulation results require accurate models
- Extensive simulation-to-measurement correlation for both PCBs and contactors is critical
- Correlation ensures models accurately represent physical design

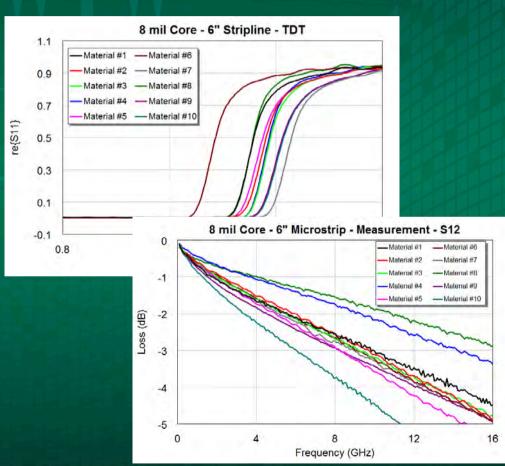


Characterization

- Test vehicles required to confirm model accuracy
- Vehicles must be created by target fabricator
- Hardware is fabricated using same techniques as end products
- Multitest manufactures both PCBs and contactors
- Test vehicles can be created quickly and easily

Characterization Project

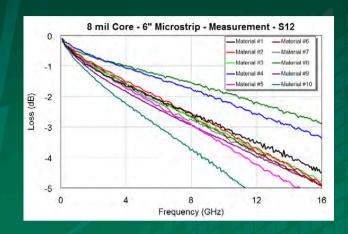
- Fabricate boards from ten different PCB materials
- Each board includes:
 - Two Core Thicknesses
 - Microstrip and stripline
 - One, four, and six-inch traces
- Via and pad geometries optimized through simulation



Material Comparisons

• Material characteristics studied:

- Insertion loss
- Loss tangent
- Dielectric Constant
- Solder Mask
- Repeatability
- Copper Roughness
- plating



Results

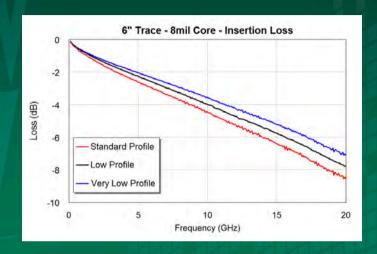
Insertion Loss

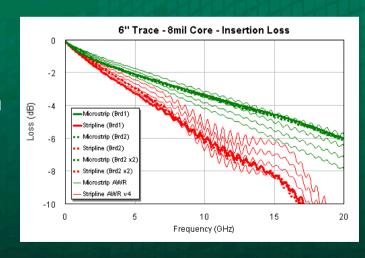
- Difference from data sheet specifications:
 - 1 dB @ 10 GHz
 - 2.5 dB @ 20 GHz

Dielectric Constant

- Measured εR and datasheet εR are different
 - | Difference | AVG = 0.12 (3%)
 - Results in up to 2 ohm difference in impedance
- Thicker cores typically have a higher εR
 - 4 mil vs. 8 mil | Difference | AVG = 0.19 (5%)

Measured ε _R			
Deviation from Spec			
Material #1	0.16		
Material #2	-0.18		
Material #3	-0.12		
Material #4	-0.06		
Material #5	0.02		
Material #6	-0.04		
Material #7	0.13		
Material #8	-0.03		
Material #9	0.36		
Material #10	-0.07		


Results

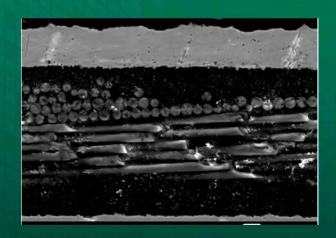

Copper Roughness

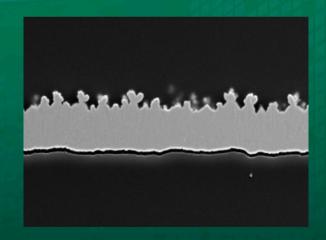
- Difference from copper profiles
 - 0.5dB @ 10GHz
 - 1.5 dB @ 20 GHz
 - As much as 3-4 dB up to 40 GHz

Loss Tangent

- Loss tangent higher than datasheet specifications
 - | Difference | AVG = 0.005 (42%)
- Thinner core materials will typically have a larger simulated loss tangent
 - | Difference | AVG = 0.002 (16%)

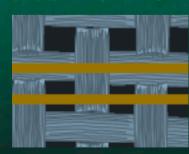
Material Specifications


- Problems with Material specifications for practical use in Simulation
 - Ideal conditions no moisture or processing effects
 - Does not account for impact of conductor losses


 Need to quantify effects using manufacturing process that will be used for end product

Drivers of Spec vs. Measurement Variation

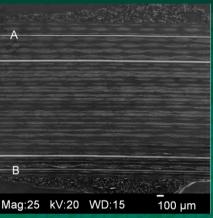
- 1) Anisotropic behavior of materials
 - Fiberglass (glass) and Resin (epoxy)
- 2) Copper effects
 - Roughness impacts dielectric constant and loss



Anisotropic Materials

- PCB Er is a combination of Epoxy Er and Glass Er
 - Er = Erepoxy*%+Erglass*%
 - Epoxy Er is lower than Glass Er
- Glass types
 - E-Glass Most common "Fiberglass"
 - NE-Glass improved electrical characteristics, lower &r closer to epoxy &r
- Er varies up to 0.32 due to Location of Trace above Weave (8%)

(WTW Weave will also impact skew



June 9 - 12, 2013 IEEE Workshop

Anisotropic Materials

Impact of Layer thickness

- 4 mil (A) vs. 8 mil (B) | Difference | $_{AVG}$ = 0.19 (5%)
- Glass has higher Dk and slower speed
- Er = Erepoxy*%+Erglass*%

Information is important to get from the PCB manufacturers

Material	Core Thickness	Resin %
Material #1	0.004	75
Material #2	0.004	68.7
Material #3	0.004	66
Material #4	0.004	65
Material #5	0.004	57
Material #6	0.004	74.5
Material #7	0.004	68
Material #8	0.004	70
Material #9	0.004	68
Material #10	0.004	56
Average	0.004	66.82

Material	Core Thickness	Resin %
Material #1	0.008	58
Material #2	0.008	46
Material #3	0.008	57
Material #4	0.008	54
Material #5	0.008	43
Material #6	0.008	45
Material #7	0.008	50
Material #8	0.008	48
Material #9	0.008	46
Material #10	0.008	56
Average	0.008	50.3

June 9 - 12, 2013 IEEE Workshop

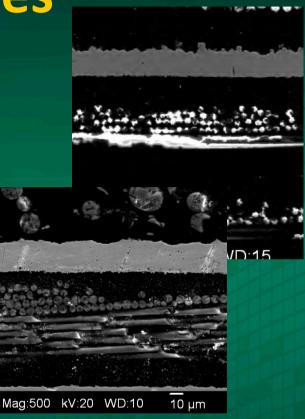
Copper effects

Paradigm shift

- For years PCB vendors have been requested to increase surface roughness to improve peel strength
- Today they are being requested to reduce surface roughness to improve signal integrity
- Copper roughness is not specified by many PCB vendors

Profiles

- Electrodeposited copper
 - High Profile, Standard Profile, Low Profile and Very Low Profile
- Rolled smoothest option, but poorest adhesion

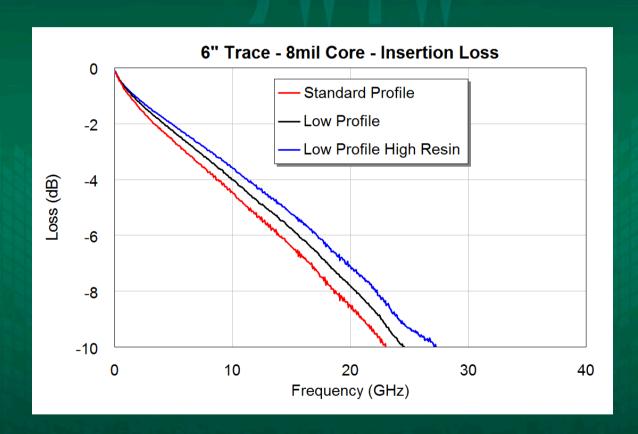


Copper Profiles

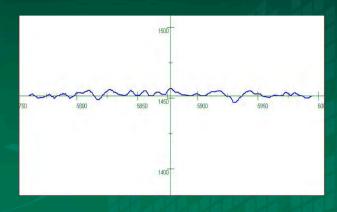
• Standard Profile - 8-10um

• Low Profile - 4-7um

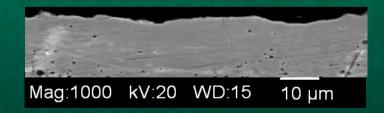
Very Low Profile – 1-3um



Surface Roughness

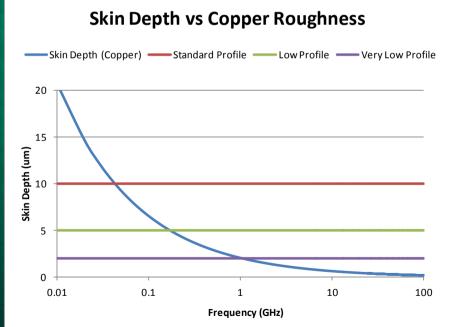

Comparing Profile impact on Insertion loss

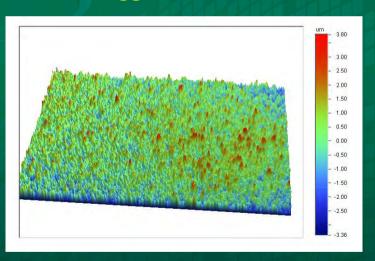
Copper Profiles


- Internal measurement comparison
 - 4 mil core 0.5 oz copper thickness
 - Nikon x1083 Magnification
 - Scanning Electron Microscope

Standard Profile 8-10um

Mag:1000 kV:20 WD:15 10 μm


Low Profile 4-5um



Conductor Losses

- As Frequency increases beyond a couple GHz Surface roughness becomes significant factor of loss
- Skin effect causes signal to travel nearer surface as frequency increases
- Above 2 GHz Standard Surface Roughness is greater than skin depth of signal
- Causes significantly more loss than traditional models suggest

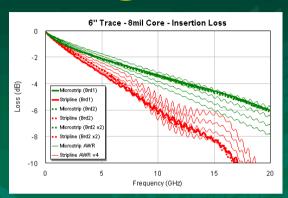
Picture Courtesy of Rogers Corporation

June 9 - 12, 2013 IEEE Workshop

Conductor Loss Modeling

Conductor Loss Model Options

- Increased Loss Tangent
 - Differs by line width and copper roughness
- Curve fit skin depth equation



- Hammerstad and Jensen
 - Additional loss constant added to classical model
 - Only differs with differing roughness

$$\alpha_{COND,ROUGH} = \alpha_{COND,SMOOTH} * K_{SR}$$

$$K_{SR} = 1 + \frac{2}{\pi} \tan^{-1} \left(1.4 \left[\frac{R_{RMS}}{\delta} \right]^2 \right)$$

Summary

- Defined major contributors to variations between simulation and measurement of PCB material
- Increased simulation accuracy
- Developed Internal ϵ_R , and loss tangent values to use in simulation models
- Developed process to do apples-to-apples comparison of PCB material high frequency characteristics

Conclusions

- Datasheet specifications are insufficient for accurate high frequency PCB design
- Modeling must include impact of copper roughness and ratio of epoxy to glass content – Need to get from PCB material vendors
- Confidence in high frequency predictions requires extensive material characterization and correlation

Future Work

- Improve understanding of surface roughness impact
- Implement surface roughness into simulation models

Thanks

• References:

- Rogers Corporation
- HIGH FREQUENCY PCB MATERIAL CHARACTERIZATION AND SIMULATION Part 1, Ryan Satrom, BITS Workshop
- Non-Classical Conductor Losses due to Copper Foil Roughness and Treatment, Intel, Gould Electronics
- Understanding the Variables of Dielectric Constant for PCB
 Materials used at Microwave Frequencies, Rogers Corporation
- Practical Fiber Weave Effect Modeling, Lamsim Enterprises

