

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 9 - 12, 2013 | San Diego, California

Small contacts, high currents, short pulses

Gert Hohenwarter

GateWave Northern

Problem

- Device pad sizes and pitch decrease
- Device voltages decrease
- Device power decreases
- But
 - p=v*i, so if v decreases and p were to remain constant, i must increase
 - Under the assumption that contact cross section decreases roughly quadratically with pitch dimensions it follows that current handling will also decrease similarly
 - Device current decrease does not generally follow this trend

Objective

- Provide insight into contact behavior
 - At DC
 - Under short pulse loading (single pulse)
- Point out potential design improvements
- Explore impact of power delivery network

Approach

- Examine contact thermal response via coupled electrical-thermal simulation
- Select a specific short pulse condition (electrical pulse length = 10% of thermal time constant) since longer pulses approach DC behavior

Geometry

Generic probe

June 9 - 12, 2013 IEEE Workshop

Boundary conditions

June 9 - 12, 2013 IEEE Workshop

Temperature dependence

R=Ro*(1+alpha*(T-To))

ki=k300*(Ti/300)^alpha*T

Source: Wikipedia

There are many different ways to describe temperature dependence of thermal and electrical resistance.

In general, resistance increases with increasing temperature.

Temperature dependence

deg K

June 9 - 12, 2013 IEEE Workshop

Constant vs. T-dependent properties

current

Temperature dependent materials properties must be included in model

Temperature rise, DC

Number of iterations in model

Temperature dependent materials properties necessitate a sufficient number of iterations in the model

Temperature rise Tr, DC

Current

Pulse current parameters

- Pulse length vs. Time constant
- Duty cycle
 - In a linear system with constant conductivities the energy delivered to a contact increases linearly with duty cycle as well as with pulse length
 - This does not hold true for temperature dependent parameters

Pulse length, Tr=f(%)

Single pulse

Pulse length [% of thermal time constant]

Temperature rise does not increase linearly with pulse length as current levels increase

Pulse length, Tr=f(i)

Single pulse

deg C

Pulse length in % of thermal time constant

Current

Temperature rise does not increase linearly with pulse length as current levels increase

Temperature distribution

Visualization of temperature rise during pulse loading

Pulse length [% of thermal time constant]

Color gradient is normalized to maximum temperature in each individual image

SMIM THTT

June 9 - 12, 2013 IEEE Workshop

Duty cycle dependence of Tr

Pulse length = 10% of thermal time constant

Normalized to peak DC temperature

Time axis

Temperature as a function of time*

(*linear electrical model)

June 9 - 12, 2013 IEEE Workshop

Material options

Improvements should be available from engineered materials:

- Higher melting point of materials at hot spot
- Less dependence of electrical resistance R(T)
- Lower temperature coefficient of thermal conductivity
- Layered structure with temperature insensitive materials

Design options

Improvements should be available from geometry:

- Forced (air) cooling
- Better heat sinking at ends, in particular tip
- Shorter contacts
- More bulk at hot spot

Examples

More bulk at hot spot

Temperature rise Tr, DC current

deg C

deg C

Current

Current

Shape as well as materials engineering can improve maximum DC current handling performance

Temperature rise, pulse current

Current constant]

Pulse length [% of thermal time

Shape as well as materials engineering can improve performance especially for short, high current pulses

DC and pulse temperature distributions

The presence of additional mass delays heating up of the center portion

What about the impact of ever improving power delivery networks?

- Low series resistance
- More capacitors near device under test (DUT)
- On-board regulators

PDN schematic example

DUT

Simplified power delivery network equivalent circuit

Current pulse from a short circuit at DUT

Examples for a short circuit at DUT condition are 'hot' touchdown and device failure during test

Conclusions

- Contact material and shape can have a significant impact on pulse current handling capabilities.
- Simulations have to be set up and monitored very carefully in order not to overlook divergences
- Energy storage in bypass capacitors near the contacts does not appear to be a major concern

