

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 9 - 12, 2013 | San Diego, California

Use of Resource Sharing Techniques to Increase Parallel Test and Test Coverage in Wafer Test

Michael Huebner

FormFactor, Inc

Motivation

- With increasing test times/DUT and die per wafer, test time/wafer and test cost were increasing
 - Increase of parallel test was identified as the solution to get out of this dilemma
 - Impact on test coverage, yield needed to be minimized

DFT and TRE were developed to enable higher parallel

test

Michael Huebner "High Speed Control Bus for Advanced TRE" SWTest 2010

> June 9 - 12, 2013 IEEE Workshop

Introduction

• Test Resource Enhancement = TRE

Sharing of tester resources between multiple DUTs using passive components.

Advanced TRE

- Sharing of test resources using active components and having the ability to connect and disconnect
 DUTs from the tester resources
- Other active circuits to increase tester capabilities
 - Current, Frequency ...

Signal TRE - Principle

- Tester driver resources are used on multiple DUTs at the same time
 - Typical signals: CLK, address, other controls (WE, CS..)
 - Tradeoffs: Signal integrity and "dead soldier" impact
 - Optimize sharing pattern to avoid sharing over the wafer edge
 - With and without resistive protection (OhmGuard™)

- TRE impacts the signal integrity (rise time, etc.)
 - Decreasing rise time with higher sharing factor

- Dead soldiers are impacting signal waveform
 - Critical: Isolation resistor value and number of shorts
 - Which signal level is required?

- Strategies to minimize dead soldier yield loss:
 - Adjust TRE/sharing pattern to wafer map to reduce potential yield loss by e.g.:
 - Minimize sharing across the wafer edge by smart layout of the sharing pattern
 - All DUTs of one shared group should be either completely on the wafer or all off the wafer during one touchdown
 - Combine DUTs which step off the wafer in same step in one group
 - Highest sharing inside the wafer reduced sharing at the wafer edge – if resources are available

Example for design of shared groups minimize sharing across the wafer edge

Stepping direction 3 TDs

- Step out on 2nd TD
 - Step out on 3rd TD

June 9 - 12, 2013 IEEE Workshop

A-TRE: Power Supplies

- **Power Supply sharing requires switches to connect** and disconnect DUTs from tester power supply
 - Disconnect DUTs during current measurements
 - Disconnect bad DUTs with high current from shared group
 - Max sharing is limited by current capability of power supply and consumption of DUT
 - Separated switches for Force and Sense are used in case of low power devices to minimize voltage drop (as shown below)

PPS Force

A-TRE: DC-Signals

- Sharing of DC-resources requires switches to disconnect DUTs from tester DC-resource
 - X-DUT DC-TRE
 - IN-DUT DC-TRE

x4 X-DUT DC-TRE

A-TRE: DC-Signals

X-DUT DC-TRE

- Forcing of voltage to DC-pads on the DUT
 - All switches closed
 - Individual switch control is required for disconnection of bad DUTs which would pull down signal level
- Voltage/current tests or chip individual voltage trimming
 - Only one chip is connected at the same time
 - Sequence control is sufficient in this case
- Different signals can be forced or measured at the same time

June 9 - 12, 20: ₁₁ IEEE Worksho

A-TRE: DC-Signals

IN-DUT DC-TRE

- One DC-resource is connected to multiple DC-signals on the same DUT
- Sequential control is sufficient no need for individual DUT control
 - Easy to implement and to control
- Less flexible in terms of test capability Force or measure only one signal at the same time

DC-Driver or PMU

A-TRE: AC-Signals

- TRE on AC signal is enabled through AC-switches
 - Perfect isolation better than resistive isolation
 - Share control lines between different signals on one DUT
 - Pull-up/down of signals

A-TRE: I/O-Signals

- AC switches on I/O channels can be used to increase parallel test without on-chip I/O compression
 - Parallel Write and Sequential Read controlled by switches
 - Used for Flash testing where Write takes longer than Read,
 overall test time benefit can be achieved
 - Also used for WLBI when individual Read back is not required in every stress cycle

Typical Application: DRAM

- Typical DRAM test scenario
 - Signal TRE x4/x6/x8 or higher
 - I/O compression
 - DC-TRE
 - PPS-TRE

X6 Shared Controls 10-15

I/O 2
DUT1
DUT2

DUT3

DUT4

DUT5

DUT6

Power-TRE switches

DC-TRE switches

Power-TRE switches

DC-TRE switches

Power-TRE switches

June 9 - 12, 2013 IEEE Workshop

Design For Test/DFT

- DFT and TRE were developed to increase parallel test
- DFT- examples:
 - I/O compression: 4 or 2 or 1 I/O mode (out of 16 I/Os)
 - Address compression test modes to reduce the number of driver channels needed to control the DUT
 - Internal DC-signal MUX to reduce number of tester resources needed
- Tradeoffs: Die area, yield, test time impact, time to market

Typical Application: DRAM

Benefits of parallel test

- Test time and test cost per wafer are reduced dramatically
- Scenario below shows change from 64DUT to 1024 DUT on most commonly used DRAM testers
- Test time overhead and higher probe card price are considered as well

Typical Application: Flash

- Total isolation: All signals can be disconnected
 - I/O and data signals
 - DC-signals
 - Power

A-TRE for SOC

- Run for high parallel test just starting may not be possible for all applications due to tester limitations
 - Easier for Memory like test problems like Embedded Memory on SOC
- Technology developed for DRAM/Flash can be used for
 - Increase of parallel test
 - Increase of test coverage in case there is a lack of certain resources (or current?)
 - New test features can be implemented on old testers extending the useful life of test systems

Need More Current?

- Voltages level are going down current is going up
- Tester power supplies provide max current at max voltage: e.g. 0.8A @ 5V
 - Typical voltages are 1.5V and below
- Use DC/DC converters to create higher current at lower voltage
 - Using PPS-TRE switches to distribute new more capable power supply channels (with current trip function?)

A-TRE Components

Requirements:

- Size matters highest integration needed
- High temperature up to 125°C
- Serial control for complex control schemes
- Low current demand

Typical components used:

- FETs and analog switches
- PhotoMOS limited by size and current
- Custom ASICs switches with serial control
- Controller: CPLDs, FPGAs, Microcontroller

Roy's Law

The number of switches on a probe card doubles every second year.

How to control A-TRE?

 Example of A-TRE control using SPI bus from tester and serial bus on probe card

Guiding Principle of TRE

- Start with your testing problem
 - How many resources are needed for the given device and test needed to be performed?
 - How many tester resources with the required capability are available?
- In case there is a shortage of resources or capability what can be done to overcome this shortage?
- On the probe card you have the flexibility to boost your tester performance and overcome its limitations

Achievements

- Typical high end cards for DRAM
 - 1000 DUTs
 - 2 power switches and 2 sense switches per DUT
 - 4 DC-TRE switches
 - Total of 8000 switches and 4000 capacitors
 - Very high component density

Summary

- TRE and Advanced TRE have been developed to extend test capability for higher parallel test and increasing test coverage
- Today high volume production test of most DRAM and NAND Flash is using a combination of TRE, A-TRE and DFT
- Other application can also profit from using the methods developed
- Many things are possible on a probe card to respond to changing device test requirements.

Acknowledgements

- Thanks to the following individuals for their contributions in the area of A-TRE
 - Nick Sporck
 - Roy Henson
 - Susumu Kaneko
 - Marc Loranger

