

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 8 - 11, 2014 | San Diego, California

Analysis of Design Parameters that Affect the Performance of Multi-site Vertical Probe Cards

Mohamed Eldessouki, PhD SV TCL – An SV Probe Company

Overview

- Motivation
- Objective
- PDN Impedance
- PDN Elements & Simulation Results
- Summary & Conclusion

Motivation

Customer

- Power plane requirements for high pin count multi-DUT probe cards (Mobile Processor, Memory, ...etc.) specifically,
- DC Resistance
 - Why is it important? How does it effect performance?
 Related directly to voltage drop
 Sensitive to Site to site design variation.
- Input Impedance
 - Why is it important? How does it effect performance?
 Directly related to noise (SSN and crosstalk)
 Parameters are inductance and decoupling cap value & location.
 Vary from site to site due to sites orientations

Objective

- Study Interconnect parameters that contribute to:
 - DC path resistance
 - Input impedance
- Find optimum design that minimizes DC path resistance & input impedance
 - Design elements & variables
- Tools Used
 - ANSYS HFSS
 - ANSYS SIwave
 - Agilent ADS

PDN impedance calculation

- Maximum allowable voltage drop
 - Minimum DUT operating voltage
 - Maximum supply current
 - Target path resistance

PDN impedance calculation

Maximum noise allowed

- Maximum voltage ripple
- Transient current
- Bandwidth

PDN impedance calculation

- Faster current delivery
 - Decoupling caps location
 - Minimize trace inductance
- Low resistance & inductance for return path
 - Loop resistance
 - Loop inductance
 - GND coupling

PDN Elements

- Source (tester)
- Bulk & Decoupling Caps
- Inductors & Ferrite Beads (LPF)
- PCB Via
 - Via diameter, length & plating
 - Via location to GND via
 - No of via connection
- PCB PWR Plane
 - Size (thickness, length, width)
 - Location of PWR plane wrt GND plane
 - No of PWR planes for each PWR net;
 - PWR Plane shape

Probe Card

PDN Elements

Via Equivalent Circuit

- Low Frequency Model
 - Length
 - Plating
 - Distance from GND via
 - Number of connections
- High Frequency Model
 - Skin effect
 - Proximity effect

Via Simulation

Case1

- Single PWR via & GND via with the following conditions:
 - Constant via length 40 mils
 - Constant via plating thickness 1mil (Cu)
 - Via diameter (=6,8,10 and 12mils)
 - Via spacing =3 x via diameter
 - Solder pad diameter or keep-out = 2xvia diameter

PDN Elements & simulation Results

Via Simulation

Case1

No Change in Inductance or Capacitance

Resistance Increase

Via Simulation

How much path resistance changed?

$$-R = \frac{\rho l}{A} \quad A = 2\pi \delta r + \pi \delta^2$$

$$\frac{R_1}{R_2} = \frac{r_2}{r_1}$$

R is inversely proportional with via diameter

How much inductance changed?

$$- L_{Loop} = 2L_{self} - 2M$$

$$L_{Loop} = \frac{\mu l}{\pi} (ln(S/r) - 1/4)$$

If (S/r) is constant, loop inductance and coupling capacitance stay constant

Via Simulation

Case1: Single PWR via & Single GND via

$$L_{Loop} = \frac{\mu l}{\pi} \left(ln(\mathbf{S/r}) - 1/4 \right)$$

No Change in loop Inductance

Mohamed Eldessouki

June 8-11, 2014

IEEE Workshop

1E8

Lv12

Lv10

E0 3E | 13

Via Simulation

Case1: Single PWR via & Single GND via

No Change in Coupling Capacitance

Mohamed Eldessouki

June 8-11, 2014

IEEE Workshop

Via Simulation

Case2

- Two 6mil via Vs single 12mil via:
- Use a single via (PWR-GND)
 structure s-parameter obtained by
 ANSYS-HFSS
- Use Agilent ADS for complete system simulation
- Assumption: No coupling between the two via system

Via Simulation

Case2

~50% Impedance reduction with two 6 mils via

No Change in Resistance

Via Simulation

Inductance dropped by ~50%

Case2

Via Simulation

Case2

Capacitance increased by 55%

Via Simulation

Case3

Comparison between two 6mil via vs single 12mil via using ANSYS HFSS

12 mil via

6 mil via Cross Configuration 6 mil via Inline Configuration

Via Simulation

Input Impedance for

- 1- two 6 mils via inline
- 2- two 6 mils via cross
- 3- single 12 mils via

Via Simulation

Inductance for

- 1- two 6 mils via inline
- 2- two 6 mils via cross
- 3- single 12 mils via

Via Simulation

Capacitance for

- 1- two 6 mils via inline
- 2- two 6 mils via cross
- 3- single 12 mils via

Real Estate Calculation

- **Area calculation**
 - Area required for N x N via array

$$A = (NS + 2r)^{2}$$
$$\left(\frac{r_{2}}{r_{1}}\right) = \frac{N_{1}C + 1}{N_{2}C + 1}$$

- **Example**
 - Area required for 10 x 10 12mil via array with c = 3

$$A = 0.1384 in$$

Number of 6 mil via for the same area is

$$N=20$$

PWR Plane Simulation

- PWR Plane location investigation
- Via size impact on PWR Plane impedance
- Duplicating PWR plane impact on input impedance

PWR Plane Simulation

PWR Plane Location

- 24 via connection from DUT to PWR Plane
- 1 via connection from Tester to PWR Plane
- Case I
 - PWR Plane close to DUT
- Case II
 - PWR Plane close to tester

PDN Elements & Simulation Results PWR Plane Simulation

PWR Plane Location

Case I

PWR Plane close to D

Case II

– PWR Plane close to tester

IEEE Workshop

PDN Elements & Simulation Results

PWR Plane Simulation

Single PWR Plane Vs Double PWR Plane

- Case I
 - Single PWR plane

- Case II
 - Double PWR plane

June 8-11, 2014

PDN Elements & simulation Results PWR Plane Simulation

Single PWR Plane Vs Double PWR Plane

Inductance & Capacitance

PDN Elements & Simulation Results

System Simulation

- Case I
 - Double 6 mil via with 6mil PWR plane

- Case II
 - 12 mil via with 12 mil PWR plane

June 8-11, 2014

PDN Elements & Simulation Results System Simulation

Case I

Double 6 mil via with 6mil PWR plane

Case II

12 mil via with 12 mil PWR plane

 ΔZ_{in} =163 m Ω

PDN Elements & Simulation Results System Simulation

Case I

Double 6 mil via
 with double 6mil
 PWR plane

Case II

12 mil via with 12 mil PWR plane

 ΔZ_{in} =791 m Ω

Summary

- Two elements were investigated:
 - Via
 - PWR plane
- Different configurations were applied with different parameters:
 - Via diameter
 - Number of via connection
 - Via location & coupling effect
 - PWR plane location in the stack-up
 - Number of PWR plane

Conclusion

For optimum performance

- –Keep S/r ratio of PCB via to keep loop inductance constant
- Reduce PCB via diameter & increase number of via
- -Reduce the coupling between GND-GND & PWR-PWR
- Reduce the input impedance by doubling PWR plane
- Location of PWR plane should be based on minimizing the length of smaller number of via connections

June 8-11, 201

Summary & Conclusion

Benefits

- Reducing Site-to-Site input impedance variation in multisite PC
- Reducing Tester Program (TP) development time
- Eliminating TP delay changes when ramping additional probe hardware
- Produce High yield in multisite probing

June 8-11, 2014

