

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 8 - 11, 2014 | San Diego, California

"Fusion Cuisine"

Hybrid Technologies to address MEMS sensors, Magnetics and High Voltage Probing

Georg Franz, Dr. Rainer Gaggl
T.I.P.S. Messtechnik GmbH

Overview

- Probing Sensors
- Pressure Sensors
- Pressurized Probe Cards
- "Vertical Cantilever Probes"
- Vertical "LuPo" Probe Head
- Magnetic Sensors
- Rotary Magnet Probe Card
- Summary

Probing Sensors

- besides electrical contact to the sensor device (probes...) the sensor element has to be stimulated:
 - pressure

R. Gaggl

- magnetic field
- light, radiation, humidity....

IEEE Workshop

MEMS Pressure Sensors – the D.U.T.

Technology: surface micro machined sensor cell

Probing MEMS Pressure Sensors...

- signal capture through electrical probes
- stimulation of sensor cells by applying air pressure

"Fusion" of a chipscale pressure chamber + "Vertical Cantilever" probe card.....

"LuPo" – Luftpolster Probe Card

"LuPo-ABS" Probe Card

"LuPo-ABS": Luftpolster – <u>Air Bearing Seal</u>

principle setup of "NoTouch" - gap seal pressure chamber probe card

IEEE Workshop

R. Gaggl

"Vertical-Cantilever" Hybrid

- "Long" probe tips needed to comply with constraints imposed by pressure chamber geometry
- Scrub behavior depends on friction on probe tips on pad surface, sometimes not well predictable
 - "skating", e.g. on Pt pad surface, pad edge damage
- Solution: "Hybrid" of Cantilever probes with guide plate known from Vertical probe card technologies
 - -> "Vertical-Cantilever Probe Card"

IEEE Workshop

R. Gaggl

Vertical-Cantilever Probes

- Probe geometry for "stubbing" contact geometry
 - optimized through FEM simulation
- Integration into "LuPo" pressure chamber

"Vertical-Cantilever" - Example

Automotive-grade pressure sensor

Paliney probes chosen for contacting of Platinum pads

Vertical "LuPo" Probe Card

Vertical "LuPo" Probe Card

Challenge:

- apply advantages of Vertical buckling beam technology to pressure sensors probing
- -> "Hybrid" of Vertical probe head (buckling beam configuration) with "LuPo" pressure chamber!
- integration of functionalities:
 - Vertical probe head housing serves as guide plates mount + part of pressure chamber + compressed air guide
 - MLO interposer serves as electrical connector + compressed air guide
- New concept for mounting and replacing vertical beams developed

Vertical "LuPo" - Example

 automotive-grade pressure sensor (same as for Vertical-Cantilever)

8x multi-site (capable of 32x – limitation here: tester ressources)

IEEE Workshop

"LuPo-ABS" - Lab Characterization

homogenity of pressure inside chamber ("hat top") better than 0.05 %

High precision wafer level sensor calibration feasible!

2-D pressure scan of LuPo chamber (diameter 8 mm), undertaken with micro static pressure probe mounted to prober chuck

gap seal

Magnetic Sensors

- various effects from Physics used to measure magnetic field strength: Hall, GMR...
- single- and multi-axis sensors
- requirements for variation of the magnetic field in strength and/or direction

2-D rotary magnetic sensor IC

picture courtesy: austriamicrosystems

Magnetic Sensor Probe Card

- customer request: wafer probe card for production test of an angular magnetic sensor
- 0.5° precision rotational positioning of magnetic field vector in the wafer plane required
- -> "Fusion" of high precision angular positioner with high strength Neodymium magnet integrated into probe card
- challenges: non-magnetic design of probe card (except magnet itself of course)
 - stiffener
 - screws....
- Design of angular positioner to fit within probe card space constraints
- Communication of angular motion control unit with tester

Magnetic Sensor Probe Card

Magnetic Sensor Probe Card

- 0.1° angular precision and repeatability
- 50 mT field strength in the wafer plane

Summary

- Wafer probing of sensor devices poses the additional challenge of "stimulating" a sensor element
- "Fusion" of various technologies allow the design and manufacture of robust production probe cards:
 - micro contacting technology
 - custom PCB and mechanical design design
 - motion control
 - pressure application
 - magnetics design
 - FEM simulation

– ...

Acknowledgements

- D. Reichenbach et al., MELEXIS Erfurt
- P. Binkhoff et al., ELMOS Dortmund
- A. Reithofer et al., INFINEON Technologies Austria
- D. Deegan, ex ANALOG DEVICES Limerick
- Ed Johnson et al., APS Advanced Probing Systems
- our staff at T.I.P.S. Messtechnik

THANK YOU!

