

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 8 - 11, 2014 | San Diego, California

Seamless Tape Wire Probe Architecture with Fully-automated Design and Manufacturing Systems for High-end Probe Cards

Gunsei Kimoto, Ph.D.

Takayuki Kakinuma

ProbeAce Co., Ltd.

Overview

- Introduction and Background
- Objectives
- Seamless Tape Wire Probe Architecture
- Selectable Probe Architecture in the AMMECS®
- Application to LCD driver IC and 3DIC/TSV
- Entire Automatic Design and Manufacturing **Systems**
- Summary

ProbeAce Work So Far

- Established in 1999, and started researching a new probe card design and manufacturing methodology.
- Proposal of the AMMECS® method (SWTW2013)
 - Geometrical challenges with mechanical solution
 - Multi-probe needle structure in a single sheet as the basic high density probe architecture
 - Precise tip motion controllable structure as the mechanical solution
 - Challenging probe card application:
 - High pin count with ultra fine pitch (>1700pins, 14um-pitches)
 - Fine pitch area array (40um, 1200pins)
 - Achieved the basic automation technologies
 - Automatic probe assembly technology
 - Automatic Cu-wiring technology

Background

Geometrical limitation

G. Kimoto

- Trends towards finer pitch, higher I/O-count and higher speed.
- Fine-pith<15um, pin-count>2K (LCD driver as a typical model)
- Fine-pitch area array (TSV array in 3DICs as a typical model)
- Mechanical and electrical performance must be filled, as well.

Manual probe assembly and Dense wiring problems

- Manual probe assembly and hand wiring cause degradation and dispersion in quality, and decrease in yield.
- Multilayer PCB and Interposers lead to high cost wiring.
- Many skilled hands are needed, for both "manufacturing process" and "per-pin maintenance" even in advanced probe cards.(limitation)

IEEE Workshop

Objectives

- Seamless wire probe architecture for HVM
 - Effective technology for dense probe assembly and wiring method
- Probe maintenance technologies
 - Probe-tip correction combined with the probe analyzer
 - Per-pin replaceable in the manufacturing system
- Advancing the AMMECS® for various test application
 - Selectable probe architecture to cover the test requirements
- Accomplishing the entire automation technologies
 - PA's original automation technologies of design, manufacture, probe card test, and maintenance.

Seamless Tape Wire Probe Architecture: What for?

Solution of

- Probe geometry
- Wiring density
- Hand wiring

Seamless tape wire probe

Conventional cantilever

What is the Seamless Tape Wire **Probe Architecture?**

The "seamless" includes two meanings.

- 1. "Seamless" structure from a probe tip to a terminal pad for tester.
- 2. "Seamless" on-line manufacture from a probe tip to a terminal pad for tester.

"Seamless" Wire Probe Structure

"Seamless" Wire Probe Structure

- "Seamless" structure from a probe tip to a terminal pad for tester, or other assigned point.
 - A long tape Be-Cu with insulation coating as a material
 - The tape thickness is totally 10 um including the insulation coat, and the width is 1.4mm at maximum in this study.
 - The probe shape is laser-fabricated precisely "on-site".
 - Each wire-probe is arranged and fixed at a prescribed position.
 - Wire-end is soldered on the terminal or other assigned pad.
 - Each wiring route is designed and programmed beforehand.
 - Each wire-probe is fixed with adhesive at key points.
 - Each wire-probe can be replaceable even after completing.

IEEE Workshop

Design and Manufacturing Process

IEEE Workshop

"Seamless" On-line Manufacture

Design process:

- 1. Input all probe-tip-XY and terminal-pad-XY coordinates.
- 2. Design a probe shape to meet the optimal Fc, OD and Scr.
- 3. Design each optimal wiring route and fixing points.
- 4. Assign some specific rotational points of the Be-Cu tape, for allowing cross wiring on one surface layer on the PCB, and complete the CAD data.

Manufacturing process flow:

- 1. A Be-Cu tape set and the process started by tape-feeding.
- 2. #1-wire-probe shape is laser-fabricated.
- 3. The probe part is fed to the assigned position and fixed.
- 4. The tape-wire is fed along the assigned route to the assigned position.
- 5. The wire-end is fixed with solder on the pad.
 - The soldering can be enforced in the batch process.
 - The tape-wire is fixing by adhesives at key-points en route.
- 6. #1-probe process is finished after the tape-wire laser-cut.
- 7. Repeated from #1- to #n-probe.

Selectable Probe Architecture in AMMECS®

Multi-probe on a single sheet architecture

- A combination of the multiprobe structures can be applicable to dense staggered peripheral array or dense area array.
- Also useful to HF test, and ultra-low leakage current measurement in DC parametric test.

Seamless tape wire probe architecture

Thin tape material enables ultra-fine-pitch probe assembly.

Selectable Probe Architecture in AMMECS®

- **Combination of the multi-probe** structures and seamless tape wire probe structures
 - LCD-driver IC is a typical model of fine-pitch, high-pin-count probe card with high data speed pins.
 - A combination of the multiprobe structures and seamless tape wire probe structures is a practical solution.
 - The multi-probe structures for high frequency signal pins, and the seamless tape wire probe structures for LCD-out pins of ultra-fine-pitch.

Probe Card for LCD driver IC

Probe Card Specifications			
Total Pin-count	2030 pins		
Min. probe pitch	14um/1800pins		
Overdrive	30um/RV, 45um/max		
Scrub	< 3um		
Contact Force	8mN/30umOD		
Accuracy	+/-3um		
Planarity	< 5um		
Cont. Resistance	< 0.5 ohm		
Path Resistance	< 2.5 ohm		
Max. Current	350mA		
Leakage	< 20nA/10V		
Data Speed	2Gbps		
Material of wire-probe	Be-Cu		

Application Example to 3DIC/TSV

- Example of Wide I/O DRAM which has an area array of 40 x 50 um-pitch and 1200 bumps.
 - The tape wire probe is placed with some proper angle to the XY coordinates of bump.
 - Each probe part is automatically fed to the assigned position, to meet the TSV bump-XY positions.

IEEE Workshop

Available Options in the AMMECS® for Test Application

Probe Card Architecture		Test Application							
Needle(s) on a sheet	Probe layer structure	Wiring and connection method	LCD d	river	3D/	Memory wafer	Logic	CIS	DC Para- metric
			LCD- out	HF	TSV				
Cingle	cla Ciarla lavan	Direct to PCB		*		*	*	*	
Single Single layer	STWP	*		*	*	*	*	*	
	Cia ala lavan	Direct to PCB		*		*	*	*	
Multiple	Single layer	Probe to Cu-wire	*		*	*	*	*	
		Multi-STWP(*)			*	*	*	*	
	Multi layers for HF etc.	To HF patterns or wires		*	*		*		
		To Guard patterns							*
		Multi-STWP(*)			*		*		*

(*) Note: Seamless tape multi-wire-probes on a sheet (Future work)

Entire Automatic Design and Manufacturing Systems

- **Automatic route design software**
- **Automatic manufacturing system for multi**probe assembly, and Cu-wiring (in the last year)
- Automatic manufacturing system for STWP, including:
 - wire probe laser fabrication, probe assembly, wiring and fixing and soldering.
- **Probe tip polishing machine**
 - for easy image recognition of probe-tip and tipalignment in the existing prober
- Probe card analyzer and tip-position-corrector

Probe Card Analyzer and Corrector

- PA's original Probe Card Analyzer and Tip-corrector for dense probe array
 - XYZ-tip-position, Contact resistance, and Leak current test
 - Probe-tip positioning correction

Probe-tip Positioning Correction

- **Based on PA's original positioning correction process**
 - A thin template is embedded beforehand in all probe-tip part.
 - Manipulating the template, to be shifted in the x- or y-direction with adding some plastic deformation to the defect probes
 - The precision is within +/-3um from target positions.

Advancement of the AMMECS® method

AMMECS method	Solution	Description
1. Multi-probe needle structure on a sheet	GeometricalElectrical	Fine-pitch and high-count arraysHF: strip lines and micro strip lines
2. Seamless Tape Wire Probe Architecture	GeometricalDense wiring	 Ultra-fine-pitch and high-count arrays Low cost wiring Free from high multilayer substrates
3. Precise tip motion controllable structure	MechanicalGeometricalMaintenance	 Optimization of Fc, OD, and Scr Small touchdown area Prevent contamination and pad damage
4. Entire automatic design and manufacturing systems	 Geometrical High yield Maintenance Cost-effective Time-to-Market 	 Free from manual probe assembly Free from hand-wiring Per-pin/wire replaceable Common material of Be-Cu thin sheet Common design and manufacture method

Summary

Seamless wire probe architecture was achieved.

- Solutions of probe geometrical and wire density problems
- Seamless structure and manufacture: a series of probe fabrication, probe assembly, and wiring from probe-tip to any prescribed point
- Free from manual probe assembly and hand wiring

Probe maintenance technologies can be available.

- Probe-tip correction method combined with the probe analyzer
- Per-pin replaceable in the seamless wire probe architecture

Summary

- Probe Card for high-end LCD driver ICs
 - Fine-pitch of 14 um, more than 2000 pins probe card, using new STWP architecture
- Advancement of the AMMECS® method for various test application
 - Selectable probe architecture to cover the test requirements
- Accomplished the entire automatic systems
 - PA's original automation technologies of design, manufacture, probe card test, and maintenance.

IEEE Workshop

Thank you!

Please contact us with any questions ...

ProbeAce Co., Ltd. information@probeace.co.jp