

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 8 - 11, 2014 | San Diego, California

Tip Coplanarity Analysis of Spring Probe Vertical Probe Head

Jiachun Zhou (Frank), PhD Daniel DelVecchio (Presenter)

Smiths Connectors | IDI

Overview

- Why spring probe in WLCSP probe head
- Probe head structure
- Probe structure & coplanarity
- Coplanarity analysis & example
- Probe head bowing & FEA
- Coplanarity vs. material & structure
- Summary

Why Spring Probes?

Spring contact probe basic structure

- Top & bottom plungers, spring, barrel
- Spring provides compliance of the probe
- Spring generates force to ensure good contact

Performance advantages

- Highly compliant
- Reliable contact to balls
- High contact force ensures low C-Res
- Simplified field serviceability
- Easy handling

Contact marks

Probe Head with Spring Probes

Lid for manual test Not for auto test

Frame Cartridge body

Cartridge Retainer

Spring Probe & Cavity Structure

Pin in **Cavity**

Pin tip array

Probe State

Preload Compressed

Probe Head Coplanarity Analysis

 Coplanarity of spring probe tip array is determined by following formula:

$$H = \Delta a + \Delta c + \Delta d + \delta$$

Where:

H – tip coplanarity of whole probe array

 Δa – top plunger neck tolerance, ~ +/-0.02mm

Δc – barrel crimping thickness tolerance, negligible

 Δd – counter bore depth tolerance, ~ +/-0.025mm

 δ – cartridge bowing due to preload

Monte Carlo Analysis Input Method

Comparison of normal distribution, Y=0, X=0 and X=Y frequency plots

Monte Carlo Schematic

Note: This is a generic drawing to define the parameters. It may not reflect the actual system being used in the analysis.

PCB

Probe Head Bottom

Site 1

Probe Head Top

WAFER

Probe

Head Frame

Monte Carlo Analysis Output Method

 Distance to failure allows for use of one sided CpK analysis

 Both results are under 4/3 CpK

AC= 1.08 CpK

• BT= 0.31 CpK

IEEE Workshop

Jiachun Zhou (Frank), PhD

June 8-11, 2014

Coplanarity Analysis Example

- Coplanarity of a 10-site WLCSP probe head was analyzed
- The results show cartridge bowing contributes about 50% of total coplanarity.

Item	Coplanarity, um		
Δa	40		
Δd	50		
δ	112		
Η	202		

Cartridge Bowing by Preload

- To achieve low and stable Cres of spring probe, bottom plunger of probe is compressed when probe head is mounted on test board
- Cartridge is bent slightly due to spring force by spring probe, "δ"
- The "δ" is determined by total probe force, probe head design and materials

Probe head before amounted on test board

Cartridge bowing by preload on test board

FEA on Probe Head Bowing

- FEA is commonly applied to predict probe head bowing. For symmetric structures, ½ or ¼ of probe head is used in FEA model.
- The basic information required for FEA:
 - Boundary condition
 - Pin count and pin preload force
 - Material mechanical properties
 Example Boundary Condition

Example Mesh

Jiachun Zhou (Frank), PhD

June 8-11, 2014

FEA on Probe Head Bowing

Analysis results:

- Stress distributed throughout the probe head structure
- Deflection (bowing) of the probe head structure

Stress

Deflection (Bowing)

Coplanarity vs. Material Selection

- Material choice makes a significant contribution to improving coplanarity of the probe head
- FEA on two materials
 - Material A is only half of Material B

Material	Spring Probe Qty	Max Bowing um
Α	850	65
В	850	112

Coplanarity vs. Structure

- Probe head structure can minimize coplanarity
 - Structure 1: Single piece high strength plastic composite
 - Structure 2: Stainless steel frame with plastic composite cartridge

Plastic Composite

SS Frame + Plastic Cartridge

Coplanarity vs. Structure

- SS frame with plastic cartridge can improve coplanarity significantly
- The SS frame probe head bowing is reduced over 30% with double the pin count

Structure	Material	Pin Count	Max Bowing (um)
SS frame	А	1568	46
+ plastic cartridge	В	1568	54
Single Plastic	А	850	65
Cartridge	В	850	112

Summary

- Spring probes have more compliance and reliable contact for WLCSP testing.
- Coplanarity of a spring probe based probe head is influenced by tolerances of components and cartridge deflection (bowing).
- The probe head bowing is the largest contributor to coplanarity.
 It is affected by material, structure and other factors.

Thanks!

Jiachun Zhou (Frank), Ph.D.

Engineering Director

Smiths Connectors | IDI

P: (480) 345-3398

E: fzhou@idinet.com

Daniel DelVecchio

Design Engineer

Smiths Connectors | IDI

P: (480) 345-3376

E: ddelvecchio@idinet.com

