

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 8 - 11, 2014 | San Diego, California

Kelvin Contactors for Wafer-Level Test

Jim Brandes

Multitest - Xcerra

Contents

- Kelvin History
- Existing Kelvin Product
- Need for Kelvin Spring Probes at Wafer Level
- New (Finer-Pitch) Kelvin Product
- Beta Sites
 - Products, Timelines
 - Results
- Summary

Kelvin Method over 150 Years Old

- Created by William **Thompson (Lord Kelvin)**
- Also Calculated **Absolute Zero**

Jim Brandes

 Kelvin temperature scale named for him

Industry Standard

- Kelvin is recognized as the best way to perform R_c-sensitive measurements
- Without a Kelvin connection:
 - Yields suffer
 - Probes require frequent cleaning
 - Probes require frequent replacement

Kelvin is a Mechanical Challenge

- Electrical contact points are small
- Landing a single probe tip is a challenge
- Landing two doubles the challenge
 - Especially in area arrays (BGAs, e.g.)
- Challenge increases as pitches shrink

IEEE Workshop

Jim Brandes

0.4 mm Pitch Kelvin

- Introduced in 2008 Very successful
 - Hundreds of designs
 - **Thousands of contactors**
 - Millions of probes
- Main limitation has been pitch
 - Capable of 0.4 mm pitch in-line
 - Capable of full arrays at 0.65 mm pitch
 - Capable of partial arrays at 0.5 mm pitch
 - Capable of partial arrays (peripheral) at 0.4 mm pitch

IEEE Workshop

Need for Kelvin at WL Test

- Wafer-Level test has always been an important application for Kelvin
 - Many devices include power management
- Mainline pitch has been 0.4 mm
 - 0.4 mm probe used despite array limitations at 0.4

Contactor for WL test using 0.4 mm pitch probe

Spring Probes for WL Test

- Spring probes good choice for WL test
 - WL test is final test
 - More capability required than wafer probe

Technology	Pogo [™] Probe	Spring Probe	Spring Probe	Membrane	Vertical 1
Туре	CSP050	0.4 Kelvin	0.3 Kelvin		
Inductance	1.22 nH	1.1 nH	1.8 nH	0.2 nH**	N/A
DC Current	1.7 A	1.8 A	1.5 A	200 mA***	0.5 A
Resistance	100 mΩ typ.	75 mΩ typ.	100 mΩ typ.	< 200 mΩ	< 2 Ω
Bandwidth	5.7 GHz	16 GHz	17 GHz	20 - 33 GHz	1.3 GHz
			** Tip Only	*** On S	older

Membrane and Vertical Probe specifications from internet

First Attempt at 0.3 mm Probe Failed

- First Attempt at finer pitch simple shrink of 0.4 mm Kelvin probe
- QuadTech architecture results in geometries that are too fragile
- Development shelved for several years

More-Recent Release of 0.3 mm Probe

- Development restarted in 2012
- Different approach taken
- Internal contact simple flat-on-flat
- Latching mechanism is different
- A patent has been applied for, based on the latch feature

IEEE Workshop

Jim Brandes

0.3 mm Probe Basic Specifications

Conductance @ 20° C rise	1.5 A	
Maximum Resistance (New Probe)	150 mΩ	
Bandwidth @ -1dB (Dual-Probe, GSG)	17 GHz	
Inductance (Loop, Dual-Probe, GSG)	1.01 nH	
Tip Options	K & D now, B later	
Minimum Kelvin Tip Spacing	83 μm	
Test Height	3.46 mm	
Total Compliance	552 μm	
DUT-Side Compliance	412 μm	
Force at test height	15 g	
Material	H.P. Alloy	
Plating (Board Side Only)	Hard Gold	

GMK030 Characterization: Life Test

0.3 mm probe Characterization: High Current Test

Gemini Kelvin 030				
20° C Temperature Rise	1.5 A			
40° C Temperature Rise	1.6 A			
60° C Temperature Rise	1.7 A			
1% duty cycle	5.0 A			

0.3 mm Probe Characterization: RF Simulation

GMK030 -1dB Bar	GMK030 Loop Inductance		
Single-Probe GS	2.1 GHz	Single Probe	1.77 nH
Dual-Probe GS	5.2 GHz	Dual Probe	1.01 nH
Single-Probe GSG	3.9 GHz	inductance values are GSG	
Dual-Probe GSG	16.7 GHz	all values at 0.3 mm pitch	

Board Fabrication Challenging

Equally distributing the probes to make contact to a 0.4 mm pitch device results in a probe pitch of 283 µm and a probe tip spacing of 83 µm

Board Fabrication Challenging

- Space Transformer Board
 - May be used for full Kelvin @ 0.4 mm
 - Fans 283 μm pitch to something larger
- Full Performance Board
 - Full Kelvin may be possible @ 0.4 mm
 - Depending on probe and site count
- Few Shops are Capable

Space Transformer Board

Beta Site History #1

- First beta-site contactors shipped Feb 2013
 - 25-ball device

Jim Brandes

- WL test and manual test contactors
- Only used for engineering work
- Each contactor has only a few thousand uses
 - Insufficient to conclude beta site
- User excited has acquired several more
 - Six quad-site (25-ball device)
 - Six quad-site (12-ball device)

First Beta-Site Contactors

Quad-site HVP contactor

Drawing of single-site hand-test contactor

Contactors for Singulated Devices

- Probe designed to support a FAP
- Necessary for singulated devices
- Wafer-level or other packaging

Jim Brandes

DUT pocket of contactor for singulated 25 BGA

Beta Site History #2

- Second beta-site contactor shipped March 2013
 - "Universal" WL contactor 0.5 mm pitch
 - 12 X 12 array, partially populated
- It took a visit in July to get them to start using
- After first 100 k touchdowns
 - Life and yield far exceeded incumbent
 - Insufficient to conclude beta site
- User excited enough to acquire more

Second Beta-Site Contactor

Beta Site History #2

- Additional Shipments:
 - One "universal" (12 X 12), 0.4 mm pitch
 - August 2013
 - Second universal 0.5 mm pitch
 - August 2013
 - Eight quad-site HVP contactors, 46-ball, 0.4 mm pitch
 - Three in December 2013, five in May 2014
 - Spare probes
- One contactor has reached 850 k touchdowns
 - Almost enough high-volume production data to conclude beta site (WTW)

Beta Site History #3

- After browbeating, 0.3 mm pitch probe offered to a third user, on an evaluation basis
- Two contactors for singulated devices
 - 32-ball device July 2013
- Two 20-site HVP contactors
 - 6-ball device October 2013
- Five quad-site HVP contactors
 - 12-ball device February 2014
- Spare probes
- Still not enough high-volume production data

Summary

- Sixteen months later . . .
- With 41 contactors in the field . . .
- Of fifteen separate designs . . .
- The beta site stage is almost complete
- (That's the way it goes sometimes)
 - Questions?

