

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 8 - 11, 2014 | San Diego, California

Real Time Contact Resistance Measurement & Control

Tony Schmitz
Erwin Barret

Agenda

- Introduction
 - Why is CRES control important?
- Objectives of Real Time Method
 - Offline Method Limitations & Goals of Real Time Method
- Methods
 - Implementation Requirements, Challenges, Techniques
- Results
 - Examples of Benefits of System
- Summary
 - What have we achieved?
- Follow-On Work

Why is CRES important in a manufacturing environment?

- Results of Poorly Controlled CRES at Test:
 - Yield loss
 - Both obvious and hidden
 - Excessive overdrive (typical response to yield loss)
 - Probe Pad Damage
 - Unnecessary cleaning iterations
 - Premature Probe Card Wear-out
 - OEE loss (Overall Equipment Efficiency)
 - Rework, Downtime, Debug, etc.
 - Quality compromised
 - Device Parameters dependent upon low/consistent CRES improperly measured (e.g. band-gap trims)
- What This Means:
 - Loss of CRES control is expensive.

Offline Method: Limitations

Limitations With Offline CRES Measurement

- Without real-time CRES data, other metrics must be relied upon.
 - Overall Yield, hard-bin, & soft-bin monitors
 - Site Bin-Delta monitor
 - Consecutive Fail monitor
 These metrics are valuable, but are device specific. Lack of an easy standard to verify a quality setup result in slow response time, and may require engineering disposition.
- Difficult to identify and investigate CRES driven test problems
 - CRES problems manifest at the second order (soft bins, distribution plots of subtle parameters, etc.)
- CRES measurement is offline
 - Does not capture all sources of variation (probe temperature, pogo pins, system planarity)
 - Loss of information, and delayed/no reaction to problems.

What This Means

Offline CRES monitoring has significant limitations

Real Time Method: Goals

- Verify & Maintain a Known Good ATE Setup
 - OEE and yield improvement
- Real Time CRES Data
 - Capture CRES data, every pin, every touchdown
- Identify Yield Loss Causes (All Sources of Variation Captured)
 - Hardware (pogo, needles, sites)
 - Probe process (cleaning, overdrive, soak-time)
 - Test program/device marginality (improper MGB)
- Act Immediately
 - Continue probing, clean, or alert operator
 - Empower operator, initiate electronic "OCAP" (<u>Out of Control Action Plan</u>) response tool
- Minimal Test Time Impact
- Increase Probe Card Lifetime
 - Intelligent cleaning frequency

Implementation Requirements

Measure & Control CRES While Probing

- Consistent & reproducible CRES results.
- Measure CRES for all applicable pins
- Measure CRES every touchdown
- Measurement occurs within same "Z-UP" as product testing
- All sources of variation captured
- All CRES data saved in a file
- Minimal impact to test time
- Real time auto-chart creation to enable fast analysis
- Develop automated process to respond to OOC CRES

Real Time Method: Challenges

Accurate Measurement

- Measure while Z-up on device, during actual test.
 - Measuring during actual test eliminates false data
 - Measurement method includes ESD structure in series with contact resistance. This requires empirical data by device/pin for initial setup.
- Predictable setup Eliminate variability in setup
 - Create reliable Auto-Z software.

Test Time Overhead Minimized

- Measurement time.
 - Measuring while testing eliminates need to move off-wafer
 - Measurement time kept to ~ 50ms. (<< 1% overall test time/TD)
- Write to file time. A lot of data (each pin, each touchdown).
 - Eliminate by using pipelining to store TD(n) data during TN(n+1).

Minimize Tool Stoppages

- Monitoring software triggers clean as first option.
- Use both hard limits (empirical) and soft Limits (SPC) to control triggers
- Operator owns OCAP trouble-shooting guide execution

Inline CRES Measurement: Method

- **Measure the Total Path Resistance Using a Continuity** Measurement Technique.
 - FIMV (force negative current, measure voltage)
 - Measured value is summation of Voltage Drops:
 - Vmeas = Ohmic + Diode

AMS

- Ohmic: V(CRES) = Hardware (pogos, PCB traces) + needle contact resistance
- Diode : Vf = Forward biased ESD diode

IEEE Workshop

Inline CRES Measurement: Method

Inline measurement technique:

- Increase current to magnify ohmic CRES resistance
 - 10mA chosen as force current
 - PMU accuracy 10mV, then
 - CRES accuracy = 1 ohm
- Vf (diode) is proportional to the natural log of the current
 - Vf = VT x In (I/Is) [Shockley equation]
 - Diode voltage varies from ~ 400 mV to 800 mV, depending on pad type, and temperature
 - Vf is Comparable within each Touchdown
- Technique works on both I/O and Power plane pins
 - Since Vf varies by pin-type, there must separate data by pin-groups.

Vmeas [mV] vs. Iforce [mA]

Consistent CRES measurement: "Auto Z" Implementation

What is AutoZ?

Automation that replaces manual Planarity Setup and Verify

What Does It Do?

- Guarantees equivalent setup at start of each wafer
- Sets probing Z-height at electrical "First Contact"
- Sets the probing overdrive (Setup Input Parameter)
- Measures the probe card planarity (Setup Input Parameter)
- Eliminates poor electrical contact related issues
- Eliminates operator variability

Why Is It Critical for Real-Time CRES Control?

Enables accurate and consistent measurements

CRES Data Collection Method

- Method of CRES Measurement and Data Storage
 - Measure all pins used in testing (Except GND)
 - Measurement to be done after continuity test
 - To exclude bad die from data set
 - Group measurement by pin-group (VDDA, VDDB, IO1, IO2)
 - Grouping is based on pin type or measurement value
 - All data of every touchdown are saved in a .csv file

P001M_KB12C0300D_4410565_8_152A-03_30Apr14_122428.csv

.csv filename example

TesterSite	Probe_Site	Touchdown	XLoc	YLoc	Pin	PinGroup	Resistance
1	58	1	12	34	P0_5	101	71.15
1	58	1	12	34	P0_4	101	71.863
1	58	1	12	34	P0_3	101	72.213
1	58	1	12	34	P0_2	101	71.838
1	58	1	12	34	P0_1	101	72.213
1	58	1	12	34	P0_0	101	71.625

.csv file content example

CRES Real Time Control Method

Real Time CRES Control

- Control software integrated to probing/test software
- Software reads CRES data and does statistical analysis per touchdown
- Determines pass/fail result based on the limits
- Take action upon fail:
 - 1) Continue probing
 - Clean probe tips before continuing
 - 3) Stop probing & prober alarms

CRES Control Flow Chart

CRES Real Time Control: Limits

Setting Fail Limits

- Set using Fixed (empirical) and/or Standard Deviation (SPC based) limits
 - SPC based limits dynamically set per TD (identify outlier by pin)
- Limits are set by pin group

CRES Real Time Control: Consecutive Fail

- Consecutive Fail Monitor
 - Software monitors consecutive failure status
 - Determines action based upon current and previous pass/fail results
 - Consecutive trip limit set to avoid false signals

Illustration Showing How Consecutive Fail Monitor Works

CRES Real Time Control: Dialogue Box

CRES Fail Dialogue Box

- Dialog box pop up
- Probing pauses & alarms
- Wait for operator
 - Stop probing , check setup
 - Clean probe tip
 - Clear failure

Example Fail Dialog Box

CRES Out of Control Action Plan (OCAP)

- Step by step troubleshooting guide for manufacturing
- Find and fix source of problem (Probe Card, Process or Pogo/Interface)

CRES Data Collection: Charts

CRES Chart

- One chart created for every we wafer test
- Chart can be viewed using the web browser
- CRES data can be viewed touchdown or by site
- All data and charts are kept for one year

Example CRES Chart

Results: Test Process Improvement

What This Is

- CRES & wafer yield distribution by Z-overtravel value
- Z-overtravel is set from 1st contact
- Distribution plot =~75K data points

CRES Distribution by Overtravel Value

Yield [%] vs Overtravel [value]

What This Means

- Overtravel parameter optimized using real time CRES data
- Improvement in yield correlated to less CRES variation

Results: Test Process Improvement

What This Is

Example Chart showing high CRES variation affecting DUT bin result

Each x-axis plot = 640 data points (64 sites x 10 pins)

CRES [ohms] vs Touchdown [count]

What This Means

- Probing process is uncontrolled, tool stops frequently
- High CRES correlated to high false test failures

What Have We Done

Implemented Auto-Z to reduce CRES variation

Wafer Map

Results: Test Process Improvement

What This Is

- A chart that shows CRES increases after probe tip cleaning
- Each x-axis plot = 640 data points (64 sites x 10 pins)

CRES [ohms] vs Touchdown [count]

What This Means

Cleaning can increase CRES if the settings are not optimized

Results: Test Cost Reduction

What This Is

- CRES data for 1000 touchdowns and no cleaning applied
- Each x-axis plot = 640 data points (64 sites x 10 pins)

CRES [ohms] vs Touchdown [count]

What This Means

- CRES did not significantly change when cleaning frequency was reduced
- Frequency of probe tip cleaning can be reduced for certain device/probe card combinations

Results: Test Program Improvement

What This Is

- CRES and yield data that shows the effect of Cres to site yield.
- A test program problem causes the CRES on VDD pin to significantly increase while probing

CRES [ohms] vs TD [count] Yield [%] vs Wafer Count

What This Means

 Test program problem was caught, analyzed and fixed quickly with the help of this system

CRES [ohms] vs TD [count]

Yield [%] vs Wafer Count

Results: Test Program Improvement

What This Is

Example data showing small CRES increase (~1.5 ohms) in a power supply pin resulted in specific test failure

Each x-axis plot = 64 data points (64 sites x 1 pin)

What This Means

 The real time CRES data collection and control enabled capability to get valuable data to analyze test program problem and implement fix

Results: Detects & Controls Other Source of CRES Problem

What This Is

 CRES data showing a pin that is 20 ohms higher than normal affected DUT bin result

Each x-axis plot = 480 data points (32 sites x 15 pins)

CRES [ohms] vs TD [count]

Wafer map

What This Means

Detected & controlled high resistance problems of the full test setup (not just probe card)

Results: What We Achieved

- Consistent, Reproducible CRES Data using Auto-Z
- Real Time Data, All Pins, Every Touchdown
 - All sources of variation
- Automated Process Control
 - Immediate response, automated & manual
 - Verify & maintain a known good setup
- Subtle Issues Identified Quickly
 - Test program problems, device/fab sensitivities
- Test Time Impact Minimal
- OEE & Yield Improvement -> \$\$

Follow-On Work

What's Next:

- Implement Cleaning on Demand
 - Remove fixed cleaning intervals

Acknowledgments

- Cypress Semiconductors
 - Jason Mooney
 - Anton Pratama
 - Paul Berndt
 - Dane Christian

