probing@hot temperature
a new thermal approach to probing accuracy

Harald Berger
Walter Seitz
Klemens Reitinger
Robert Stoiber
Content

• Introduction
• Present Solutions
• Thermal Approach
• Measurement of Temperature and Displacement
• Concept of dynamic thermal shielding (DTS)
• Temperature Measurement w and w/o DTS
• Feedback of DTS to wafer
• Displacement Measurements w and w/o DTS
• DTS in production environment
• Outlook
• Summary
Introduction

• You cannot beat physics
• probing at high temperatures generates a very high amount of heat energy
• main problem is drift of X/Y/Z position
• Detailed explanation of these values and a model to explain these drifts are well known [Berger/Seitz, SWTW 2013]
Present Solutions

<table>
<thead>
<tr>
<th>Methode</th>
<th>Action</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical realignment</td>
<td>correcting the drift</td>
<td>very accurate; no investment</td>
<td>time consuming; thermal disbalance while realignment; no control between realignments</td>
</tr>
<tr>
<td>Pre soaking</td>
<td>accelerates reaching a balanced situation</td>
<td>no investment</td>
<td>time consuming;</td>
</tr>
<tr>
<td>Pre-heating of probecard and / or headplate</td>
<td>accelerates reaching a balanced situation</td>
<td>faster than just soaking; not only probecard effected</td>
<td>time consuming; static, non local solution; cost of invest</td>
</tr>
<tr>
<td>mathematical prediction</td>
<td>Control of position by temperature sensors an math. methodes</td>
<td>Local, no time loss</td>
<td>uncertainty remains (no controlling, no monitoring)</td>
</tr>
</tbody>
</table>
Present Solutions

<table>
<thead>
<tr>
<th>Methode</th>
<th>Action</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive shielding</td>
<td>prevents heat soaking for a certain time</td>
<td>few investment</td>
<td>Static, non local; retarding but not solving</td>
</tr>
<tr>
<td>Cooling of probe card</td>
<td>prevent heat soaking of probe card</td>
<td>Instant effect, no time lost; high invest</td>
<td>Static, non local</td>
</tr>
<tr>
<td>“thermal design” of probe card</td>
<td>Fit the design to high temperature use</td>
<td>Intrinsic solution, no other countermeasures</td>
<td>compromise to other PC features; expensive materials; high invest</td>
</tr>
</tbody>
</table>
Measurement of Temperature and Displacement

- Measurement Unit: µm
- Chuck +200°C, -0.2mm under needle
- Probes: Chuck +200°C, -0.2mm under needle
- Air cooling: 70 l/min

Process of Temperature

- T1: no cooling
- T2: no cooling
- T3: no cooling

Process of Displacement

- T1: no cooling
- T2: no cooling
- T3: no cooling

H. Berger, W. Seitz, K. Reitinger, R. Stoiber

June 8-11, 2014, IEEE Workshop
Measurement of Temperature and Displacement

Process of Temperature

- T1 no cooling
- T2 no cooling
- T3 no cooling
- T1 cooling
- T2 cooling
- T3 cooling

H. Berger, W. Seitz, K. Reitinger, R. Stoiber

June 8-11, 2014
IEEE Workshop
Measurement of Temperature and Displacement

Process of Displacement

H. Berger, W. Seitz, K. Reitinger, R. Stoiber
Concept of dynamic thermal shielding (DTS)

Air entry
Air exit

Probecard Center TBD

Fixture of DTS

Enlargement of cooler
Temperature Measurement w/o DTS

Temperature distribution on Probecard with +165°C Chuck at rear position
Temperature Measurement w/o DTS

Temperature distribution on Probecard with +165°C Chuck at rear position
Temperature Measurement w DTS

Temperature distribution on Probecard with +165°C Chuck at rear position
Temperature Measurement w DTS

Temperature distribution on Probecard with +165°C Chuck center position (no delay)
Feedback of dynamic thermal shielding (DTS) to wafer

\[T(\text{chuck}) = 175^\circ \text{C} \]
PC with DTS at 175°C Testing Temperature

Thermal Pin-Shift [µm]

Testing Time

H. Berger, W. Seitz, K. Reitinger, R. Stoiber

June 8-11, 2014 IEEE Workshop
Number of realignments necessary:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Probecard w/o cool shield</th>
<th>Probecard w cool shield</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>Y</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Z</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>sum</td>
<td>71</td>
<td>13</td>
</tr>
</tbody>
</table>
Outlook:

- Thermal stabilizing of ceramic head will result in further improvement

- Docking of probecard has to be simplified for production
Summary:

• Stable thermal equilibrium reached by cool shield
• Accuracy improved by factors
• Especially fast changes of heat source can be completely compensated
• Effort for realignment can be reduced dramatically