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Background

e High temperature, high current testing represents a challenging
working condition in wafer probing technology.

Mainly Automotive Customers are requesting us to predict
maximum current carrying capability of a single probe in real
production conditions

In this work we summarize our basic experiments and modeling
of the thermo-electrical behavior of both vertical type and
cantilever type microprobes considering:

— Different geometrical configurations and different probe materials
(Tungsten, Cu alloys, precious metal alloys)

— Real probing conditions
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Background

e |[SMI CCC measurement method for vertical probes

— CCC is the “Current Carrying Capability”, defined as the maximum direct current
that can be carried by a probe without damage (“burning”) for an indefinite time.

— ISMI method is widely adopted to evaluate the CCC for vertical probes.
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In the graph a typical measurement of
CCC for a vertical probe is reported.

Here CCCis 810 mA.

Force reduction is due to probe
heating that leads to a drop in probe
stiffness.
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Background

e Max CCC for cantilever probes

— ISMI method seems to be not suitable for WR cantilever probes

e WRe has a melting temperature of 3380°C and heating of the needle body
during the test isn’t enough to induce a force degradation.

e The tip portion of the probe acts like a fuse, protecting the body from
excessive heating and consequent stiffness degradation. The contact force is
approximately constant until the tip is melt, in contrast with the physical

principle behind ISMI method (20% force degradation).
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Background

e A way to define Cantilever probes CCC could be as follows: “maximum
continuous current value for which the probe does not undergo any visible tip
burning after 5 minutes of solicitation”.

— Tip “burning” is identified by tip discoloration due to any oxidation optically visible.

— Oxidation mechanism is very slow when the tip undergoes a small temperature
increment (200-500°C) but becomes much faster when the tip reaches a
temperature higher than 1200 °C (10 + 200 ms)
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Test vehicles

Probe features

e Two different kind of needles have been considered:
— Vertical TPEG™ MEMS T4 needle
— Cantilever NoScrub™ needle

¢ Needle main features:

TPEG™ MEMS T4 Cantilever NoScrub™

RIS Features
Length - Length 0.28L

Alloy High current alloy Alloy Standard alloy

Thermal diffusivity Thermal diffusivity 0.54q,
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Probe A

Test vehicles
Probe features

Description

WRN4 mils ( No Taper)
Contact diameter = 100 um

Test Current (mA)

Probe B

WRN4 mils
Contact diameter = 16 um

Probe C

WRN4 mils
Contact diameter = 23 um

TPEG™ T4
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Experimental Setup
Time constants measurements

e The picture below shows the experimental setup:

— The probe card (Cantilever or Vertical PH + Space Transformer) is loaded
on (TEL P8XL) prober.

— Power supply and oscilloscope are connected to the probes under test.

— Probes are contacting a wafer (Au or Al blank wafers)

Cantilever Setup Vertical Setup

WV

D. Acconcia — R. Vettori June 8-11,2014 &' >  IEEE Workshop




Experimental Setup
Time constant measurements

e Cantilever measurement setup simplified schematic

VRef(T:t)
Rprobe —

Y. | Rprobe(T' t)
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Experimental Setup
Time constant measurements

e Vertical measurement setup schematic

Varop = Vtot —Vsense = Vdrop (I)

Varop(I)
Rprobe = d+ » Rprobe(l) — Rprobe(Tr t)

Vsense

Ty
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Experimental Setup
Measurement principle and procedure

e Measurement principle

— Temperature rise time constant is measured indirectly by means of probe
electrical resistance measurement over time when a known current is
forced to the probe under test

e Measurement procedure:

— When the switch (A) is closed the power supply is in load condition and
current starts to flow in the needles. An anti-bounce circuit has been
connected with the switch to avoid current overshooting.

e Current load imposed is a step.
e The Vref (T,t) detection with a known current Iref value imposed, provides the
needle raise resistance transient through the Ohm law.

— When Switch A is opened, high current generator is disconnected from
the probes and the resistance drop transient (during cooling) is measured
with a 10 mA current (WTW
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Experimental results
Cantilever probes

e R(t) comparison between probes with and without taper

— The taper gives the greatest contribution to the R(t) variation in terms
of rise time and amplitude.

— Tip heating is in fact the main contributor of probe resistance change.
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Experimental results
Cantilever probes

e R(t) measurement description
— Blue line shows the instantaneous resistance rise (when current is applied)

— The resistance , mainly due to the tip portion of the probe, reaches the equilibrium after about
70 ms. Further resistance increase (yellow line) is relative to the slower heating of the probe
body.

Green line represents probe cooling down time, that is always longer than heating time.
Red line shows the Base Path R on Au wafer, considered as starting point for the R(t) transient.

R(t) on Au Wafer Probe Diam 16pum (I = 650mA)
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Experimental results
Cantilever probes

e R(t) comparison between 2 probes with different contact diameter.

— The smaller the contact diameter (slimmer tip), the higher is the
temperature reached by the tip that has to bear a greater current density.

— The slimmer the tip, the faster is the transient raise time.

R(t) on Au wafer Comparison:
Cantilever probe with and without tip and different contact diameters
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Experimental results
Cantilever probes

e R(t) measurement during probing on Al Blanck wafer.
— Contact resistance contribution has been investigated performing many TDs on
a Al blank wafer without polishing.
— The higher the C_RES, the higher is the temperature reached by the tip and the
faster is the R(t) transient.

R(t) on Al blank wafer during probing without cleaning
Probe with Diam 16um (I=650mA)
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Experimental results
Cantilever probes

e CCCin pulsed mode ( Tip discoloration )

— Probes with contact diameter 16 um has been tested
— The max current limit is establish when black Oxide (WO.) is observed
— 2 different pulsed current have been applied with the same Duty Cycle:

5ms 5ms 0,5
100 ps 100 ps 0,5

e Conclusion

— The Duty Cycle is not enough to define Max pulsed CCC. At least t,, or ty should
be considered as well.

— ton and toffare relevant for the tip temperature and the oxidation speed process.

e ton is important for the max temperature reached by the tip with the consequent fast activation of
the oxidation mechanism.

toff is important for the tip cooling. A long toff allows the usage of higher current than the Max CCC in
continues mode and it is important in case of a train of pulse is applied.

WV
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Experimental results
Cantilever probes

e CCCin pulsed mode

— Below an example of the Toff importance when a train of pulse are applied with a safe Ton
for a single pulse

T T

DISCOLORATION T

Max DC | —— — _— ]
for a given probe\{ |I | l ‘ |[ ‘ I

= Tip temperature for direct current
— Tip temperature for pulsed current

e A visual explanation
— 2 video are filmed. The same current and Ton is applied changing only the Toff.
— The current has been chosen to achieve a temperature around 2000 °C
( WRe became incandescent and visible)

Videol: I=800mA Ton=800 ms To#+=300ms Video2: I=800mA Ton=800 ms To#=200ms
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Experimental results
Vertical probe

e In figure R(t) behavior for vertical probe is reported

— The transient is referred to two probes in series
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Model introduction

Temperature dependent material properties and different
boundary conditions are considered such as:

— Probing environment temperature, DUT temperature, temperature
variation during probing (die stepping, on line cleaning, ...).

— As expected, this leads to a highly nonlinear response of the model.

Pulsed current working condition are studied and compared
with continuous current solicitation.

— Duty cycle concept is adopted

— Needle time constant is considered as key parameter.

The model has been validated since the beginning with direct
measurements of needle time constant.
— A good agreement has been found

— In this view, the model represents an effective tool to study probe
behavior and its limit working cosrwcrj‘btions.
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Model introduction
Time constant as key parameter

e Time constant is the parameter characterizing the response to a
current load

e |tis a key parameter to evaluate the max thermal stress on a
probe in relation with duty cycle and t,, or t

e The pulse ton, together with pulse amplitude and duty cycle
define the max temperature reached by the probe during
current flow, depending on probe time constant.
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Model description

Assumptions
e Assumptions:
Time dependent temperature
Monodimensional heat conduction

Linear behavior of resistivity with temperature

Convective coefficient h_,,, considered as constant

e Convective coefficient is obtained by literature
analytical/empirical formula

IWTW
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Model description
Numerical scheme

e Numerical solution is obtained via finite difference method:

— Derivative of temperature versus time is approximated with a forward
finite difference

— Spatial derivative is replaced by a central finite difference approximation
— Neumann Dirichlet boundary conditions are implemented

e Equations used

P=—-41

dT {(pl = hconv(Text —T)adx

@2 = heony (Text — T)bdx

dx
Q]oule - dR(T)IZ m pO[l + ares(T — Tref)] 712

¢: heat flux
WTV'l
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Model description
\YETREEIIERS

Developed code can be used to simulate thermal transient property of
different needle geometry:

— Constant needle cross section
— Tapered needle cross section
— User defined needle cross section
It is possible to apply different time dependent current load:
— Pulse
— Ramp
— User defined analytical expression
Temperature boundary condition can be imposed in terms of:
— Constant temperature (Dirichlet BC)
— Flux (Neumann BC)

It is possible to change environment temperature and the convection
between needle and environment
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Comparison between simulation and
experimental measurements
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In figure comparison between
measured data and the results
provided by numerical model is
showed for vertical probe:

— There is a good agreement between

experimental data and numerical
simulation.

Single probe needle time constant
estimated is ~ 70ms

The error based on transient time
constant is less than 10%.
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Comparison between simulation and
experimental measurements

e |n figures below comparison between measured data and the results provided
by numerical model is showed for cantilever :

— There is a good agreement between experimental data and numerical simulation.

— The probe needle time constant estimated is about 265 us at 400mA current load and
280 ps at 650mA current load

The error based on transient time constant is less than 15%.

T T T T T T T T
+  Experimental data : : : : +  Experimental data
+  Mumetical simulation result | sk ; : +  Mumerical simulation result
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Comparison between simulation and
experimental measurements

In figure comparison between
measured data and the results
provided by numerical model is
showed for catilever during the probe
cooling:
Probe B after 650mA current pulse
There is a good agreement between

experimental data and numerical
simulation.

The probe needle time constant during

|:|,|.:|'1 0.02 0.03 |:|_|£|4 0.05 I:I,I.:IEi 0.07 pro be coolin g is aboutl5 ms
Time [5]
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Numerical code applications
High temperature/current probing

e In figure is reported a probing

simulation with developed code:
Vertical probe TPEG™ T4
Hight temperature probing: 150°C
' I chuck temperature
5 ; Hight current: 1.5A duty cycle ton=
-~ Diestepping 5ms, duty cycle toff = 10ms
al.. . S . — R A B e e orecquent
needle cooling has been

considered

18 A t_on=5mst_off=10ms

- Pulse train

[
(1
=

=
(1
=
o
=
o

—

The temperature reported in
ordinate is referred to the probe
middle cross section
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Numerical code applications
Cleaning during high temperature probing

In figure is reported a second
probing simulation:

— Thermal transient, during tip
cleaning

High temperature probing: 150°C
chuck temperature

— Cleaning sheet temperature: 50°C

[
[0
=

=
[0
=
]
=
o

—

The temperature reported in
ordinate is refered to a probe cross
section near the tip

. Acconcia — R. Vettori June 8-11,2014 ) IEEE Workshop




Conclusions and further work

Thermo-electrical behavior of both vertical and cantilever microprobes was
studied

Starting from experimental measurements, a numerical model has been
defined considering as key parameter the time constant

— Model has been validated successfully: numerical results were compared with direct
measurements of needle time constant and pulsed current tests, with a good agreement.

The same model could be used to predict probe temperature behavior in real
probing conditions considering different current and thermal loads
— Some examples have been reported

— Future work will be to introduce C_RES contribution into the model and to continue model
fine tuning with extensive experimental tests
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