

SW Test Workshop

Semiconductor Wafer Test Workshop June 7 - 10, 2015 | San Diego, California

Blindmate RF Connector for E-Band Production Test

Daniel Bock, Ph.D.

- Introduction
- Production E-Band test (60-90 GHz)

 Current Connector Options and Limitations

 Summary of Connectors for production test
 Performance comparison with non-Blindmate connectors
- Summary

E-Band Market Drivers

- There are several primary market drivers that are requiring more test in the E-band
 - Automotive Radar

Cell Phone Short/Back Haul

Daniel Bock

June 7-10, 2015 2 0 1 5

SW Test Workshop

Market Growth Coming

• The largest of these is projected to be Automotive Radar

An anticipated CAGR of ~33% through 2018

Author

What does this mean for Probe Cards?

• The market will require:

- Hard dock probe cards instead of cabled (soft dock)
 - Prefer blind-mate connectors to standard coax connectors
- Large number of RF connectors
 - Each automotive die can have 5+ RF high speed channels
 - x4 would then require more than 20 RF connectors per probe card

What should a full production connector look like? Simple to connect Requires no manual 'threading' Minimize need for recalibration No flexing of coax No need for the test engineer to install the probe card High performance (better than -10 dB RL) Air dielectric is preferred

Daniel Bock

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

Current Types of Connectors for above 40 GHz

Connector	BW	Type of Connector	Example	Limitations	
1.85 mm	67 GHz	Thread-on		Soft Dock	
1 mm	110 GHz	Thread-on	CELT	Soft Dock	
SMPM	65 GHz	Blindmate	5	Not enough BW	
SMPS	100 GHz	Blindmate		Low number of cycles (<500)	
SSB	65 GHz	Blindmate		Not enough BW	

June 7-10, 2015 ^{25TH ANNIVERSARY} SW Test Workshop

Direct-dock Waveguide Connector

 In order to meet the requirements for a full production connector, Cascade Microtech is developing a Blind-mate Waveguide connector

Evaluation Probe card

- Cascade Microtech fabricated an evaluation probe card to test RF performance when using a Pyramid Probe[®]
 - The evaluation Probe card had 4 waveguide connectors
 - 4.5" probe card
 - Used the smallest Pyramid
 Probe (RFC)

Test Setup

 A Golden Pyramid Probe Designed for 80 GHz performance PCB using Blindmate Waveguide Semi-rigid 0.031" coax between the waveguide and the Pyramid Probe Cascade Microtech Summit 12k **Probe Station** Keysight E8361C with frequency extenders

 Using Coax to waveguide adapters (WR12)

Author

RF Data – Return Loss

Better than -10 dB from 65 GHz to 90 GHz Better than -15 dB from 68 to 84 GHz

SW Test Workshop

June 7-10, 2015

Daniel Bock

11

RF Data – Insertion Loss

 Better than -6 dB insertion loss from 65 GHz to 90 GHz

Daniel Bock

12

TDR Measurement

 The TDR data shows that the impedance discontinuity is less than 60 milli-rho at the waveguide to coax transition

📇 File	Trace/Chan	Response	Marker/Anal	rsis Stimulu	is Utility H	elp				_ @ ×
Transform		<u> </u>	enter/Span	 O fsec 		13.333333 n	sec 🗧 🗍	More 💡	×	
Tr 1 S11 LinM 20.00mU/ 0.00mU Tr 2 S11 LogM 2.000dB/ 0.00dB										
200.00										
180.00										
100.00										
160.00										
140.00										
120.00										
100.00										
100.00										
80.00										
00.00	MA									
60.00										
	171	.	11							n l
40.00			A A							
										$ \land $
20.00										
0.00	Them.	VWIIYY	WI 15~					M		
1	>Ch1: Start								Stop	3.8000 ns
1 Ch1: Start 60.0000 GHz Stop 90.0000 GHz CH1: I:PNA RF Source 2. PNALO Source Stop 90.0000 GHz										
	CH 1: S11		1-Port	Transf	form					RMT

SW Test Workshop

June 7-10, 2015

Author

Comparison with 1mm

- Comparing with a typical probe card using 1 mm connectors, the performance is similar over the frequency range
 - 22 mm of waveguide and ~40 mm for coax
 - 1 mm connector (~13 mm long) and ~40 mm of coax

Insertion Loss

Black – Waveguide

Yellow – 1mm connector

Daniel Bock

66

N17B (S21)

68

70

72

74

76

78

80

82

R025176_090-0260-01A_7043R (S21

84

88

0

-.5

-1

-1.5

-2.5

-3.5

-4.5

-5 -5.5

-6

육 -3

Next Steps

Continuing work to evaluate the number of cycles

 Our expectation is that mechanical wear should have a minimal effect

 Evaluation of the repeatability of RF performance with dock/undocking cycles

Summary

- We have characterized a direct dock waveguide connector that could be used with ATE systems
 - It meets the performance requirements for 65-90
 GHz
- The hard dock waveguide connector will work well for full production test

Questions?

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop