

SW Test Workshop

Semiconductor Wafer Test Workshop June 7 - 10, 2015 | San Diego, California

Experience in Applying Finite Element Analysis for Advanced Probe Card Design and Study

Krzysztof Dabrowiecki Jörg Behr

- A little bit of history in applying finite element analysis for probe card design
- Trial and error versus FEM approach
- Example of recent FE design and studies
- Summary and conclusion
- Follow-on work

A little bit of history of FE Modeling

Dabrowiecki, Behr

SWTest 2000: 3D modeling of mechanical contact between probe tip and bond pad

2003 SOUTHWEST TEST WORKSHOP intel.

Vertical Probe Development for Copper Bump Test Challenges

Bahadir Tunaboylu, PhD, Kulicke & Soffa Industries Ethan Caughey, Intel Corporation

June 2, 2003 Joint Development and Collaboration Effort Between K&S and Intel

SWTest 2003: The FE model of 3D, parametric and non linear vertical, Cobra style probe

Structural stability of shelf probe cards Krzysztof Dabrowiecki, Probe2000 Inc Southwest Test Conference, San Diego, CA June 08, 2004

SWTest 2004: Structural stability of the ceramic shelf probe card.

Dabrowiecki, Behr

June 7-10, 2015 2015

25TH ANNIVERSARY

2 0 1 5

June 7-10, 2015

Dabrowiecki, Behr

Dabrowiecki, Behr

Dabrowiecki, Behr

June 7-10, 2015 2 0 1 5

Probe Card Technology

ASE GROUP

SWTest 2011: FE model of scrub formation probe on aluminum wafer

SWTest 2012: FE analysis of guide plates to optimize probe design

June 7-10, 2015

IEEE SW Test Workshop Semiconductor Wafer Test Workshop

SWTest 2012: FE buckling beam MEMS probe model. The multi-physics, thermo-electrical analysis for high current and low pitch applications

Dabrowiecki, Behr

s v probe

25TH ANNIVERSARY 2 0 1 5

Full Travel

Design Advantages: Flexibility

LIGA and its Application to **Electrical Interconnects**

Semiconductor Wafer Test Workshop

Very Small Pitch Micro Bump Array Probing

Fraunhofer		FEIN METALL Contact technologies for electronics			
	TEAM	NANOTEC	Limec		
Gunther Böhm FEINMETALL	Samuel Kalt Team Nanotech	Dr. Armin Klumpp Fraunhofer- EMFT	Erik Jan Marinissen IMEC	Dr. Joerg Kiesewetter CASCADE Microtech	Dr. Wolfgan Schäfer FEINMETALI

SWTest 2012: FE analysis of **MEMS** Monolithic **Compliant** Interconnects (MCI)

SWTest 2013: A unique and novel MEMS probe design. The finite element analysis of silicon probe with metalized crown tip

Noelle L. Blaylock¹ Stevan Hunter PhD^{1,2} ¹Brigham Young University Idaho

²ON Semiconductor

SWTest 2014: FEM of the cantilever probe tip model in contact with thin and thick aluminum pads.

Dabrowiecki, Behr

IDAHO

25TH ANNIVERSARY June 7-10, 2015 2 0 1 5

Presenters: Soheil Khavandi **Co-authors: Parker Fellows Robert Hartley** Jordan James Aaron Lomas

IEEE SW Test Workshop Semiconductor Wafer Test Workshop

June 8 - 11, 2014 | San Diego, California

Jerry Broz, Ph.D. Advisor

SWTest 2014: FE model Of transverse load cell and cantilever probe tips scrubbing an aluminum wafer

A pretty remarkable portfolio of FE analysis last 20 years!

Dabrowiecki, Behr

25TH ANNIVERSARY June 7-10, 2015 SW Test Workshop 0 1 5

How to Approach New Challenges?

Trial and Error Method

 Finite Element Method for composite materials and complex designs

 Combined two methods to verify a final design

Dabrowiecki, Behr

Trial and Error Tests

A custom design and build of test probe head or probe card

Dabrowiecki, Behr

Initial Test Parameters

Probe Contact Force

Path Resistance

Wafer Bump Deformation Test

Bump Wafer SAC305

Bump Deformation

Dabrowiecki, Behr

June 7-10, 2015 🍞

25TH ANNIVERSARY 2 0 1 5

Wafer Bump Deformation Test at RT

Wafer Bump Image				
Over Drive (um)	25	50	75	100
Scrub Diameter (um)	12,7	19,1	21,6	21,8
Percent of Bump Def (%)	8,9	13	15	15,3

Dabrowiecki, Behr

Study Using High Speed Camera

Video capture of dynamic contact a probe with bump

Description: frame rate 500Hz; Over-travel 500µm; Over-drive 100µm

Dabrowiecki, Behr

But always is a question. Can we ...

.. develop a reliable, virtual method to predict a complex structure behavior for various load conditions? ... quickly and in advance predict a weakest link of material structure to avoid composite material damages or failures?

A Couple Examples of FE Studies

Dabrowiecki, Behr

June 7-10, 2015

5TH ANNIVERSARY 2 0 1 5

Cu Pillar FE Model

Dabrowiecki, Behr

June 7-10, 2015 🌖

15 25TH ANNIVERSARY 2 0 1 5

Model Material Properties

Items	Modulus of elasticity (E)	Poisson's ratio (v)	Thermal expansion (CTE, α)	Thermal conductivity (κ)	Yield strength (Re / Rp0.2)
	[GPa]		[ppm/C]	W/(m K)	MPa
Silicon die	131	0,28	2,8	150	UTS=7000
Copper pillar/ Copper pad	121	0,34	. 16,9	399	70
Tin Cap	48	0,35	22,3	55	24
Oxide	215	0,21	4,5	12	. 69
Al Pad	72	0,33	23,0	238	414
SiN	270	0,28	5,0	30	86
Polyimide	3,5	0,35	35,0	1,6	69
UMB	135	0,33	14,5	34	. 32
ULK	8	0,2	25,0	0,39	96

25TH ANNIVERSARY

-1-5

Source: NIST, IBM, STATS ChipPAC, Ansys, Japan Institute of Metals

Dabrowiecki, Behr

June 7-10, 2015

FE for 2D and 3D Models

Ansys elements:

- 2D: PLANE183 (axisymmetric), CONTA172, TARGE169, SURF153- 3D: SOLID186, CONTA174, TARGE170

Elements and nodes created after model meshing

- 2D: 2924 elements
- 3D: 20875 elements

Elastic-plastic contact between probe and Cu pillar

- 3D: Deformable-deformable contact, Augmented Lagrange method, initial friction coefficient 0.2, non-linear material model only for lead free cap (bi-linear)

June 7-10, 2015 2-0-1-5 SW Test Workshop

FE Model Stress Distribution

Dabrowiecki, Behr

June 7-10, 2015

2 0 1 5 SW Test Workshop

Stress by Model Layers – CF 6.6cN

Stress by Model Layers – CF 2.4cN

FE Cu Pillar Models Simulation

Probe force 6.6cN

G: 6.6 cN F: 2.4 cN stress stress Typ: Vergleichsspannung (von Mises) Typ: Vergleichsspannung (von Mises) Einheit: MPa Einheit: MPa Zeit: 2 Zeit: 2 Max: 1.3e2 Max: 77 Min: 1.2e-5 Min: 1.2e-5 84 84 75 75 65 65 56 56 47 47 37 37 28 28 19 19 9.3 9.3

Dabrowiecki, Behr

June 7-10, 2015

5 25TH ANNIVERSARY 2 0 1 5

SW Test Workshop

Probe force 2.4cN

Max Stress Vs. Contact Force

FEA estimated less than 0.2 cN as min contact force of flat probe tip with hemisphere bump

Dabrowiecki, Behr

FE Model Validation – CF=6.6cN

25TH ANNIVERSARY

2 0 1 5

Advanced Model - FE deformed bump diameter d = 26.6um

Dabrowiecki, Behr

June 7-10, 2015

FE Model Validation – CF=2.4cN

25TH ANNIVERSARY

2-0-1-5

Advanced Model - FE deformed bump diameter d = 18.2um

Dabrowiecki, Behr

June 7-10, 2015

FE Model Vs. Wafer Test Correlation

FE Models showed a good correlation between calculated and measured deformed bump area with increasing contact force

Dabrowiecki, Behr

V93000 Direct-Probe[™] Test Solution

ANNIVERSARY

June 7-10, 2015

SW Test Workshop

Dabrowiecki, Behr

30

V93000 Direct-Probe™ FE Model

PCB Properties and FE Parameters

• PCB material:

- Modulus of Elasticity 25 GPa
- Poisson's Ratio 0.18
- Yield Stress 60 MPa
- Used elements:
 - 3D Model: 76962 elements of SOLID186 & SOLID187, 14800 elements of CONTA74 & TARGE70, 280 elements of SURF154, 480 spring elements

Boundary conditions:

- Force: 624 N equivalent of 26000 probes
- Fixed support in screw holes of the bridge beam

Stiffener Inlay and Bridge Beam

PCB maximum deflection supported by stiffener inlay connected with bridge beam: 8.6 um

PCB maximum von Mises stress: 0.9 MPa.

Dabrowiecki, Behr

June 7-10, 2015

2 0 1 5 SW Test Workshop

Probe Card Deflection Simulation

Simulation scale: x1100

Dabrowiecki, Behr

June 7-10, 2015 2 0 1 5

Summary and Conclusion

The finite element modeling has become sufficiently mature to develop reliable insights into the mechanical integrity especially of composite materials and complex structures.

The graphical interpretation of the results and model simulations allow a better understanding of copper pillar structures as well as critical factors identifying the weakest parts of materials underneath of interconnectors or complex structure like 93000 Direct Probe[™] solution

Dabrowiecki, Behr

Summary and Conclusion

The test results shown a good correlation between FE calculated bump deformation and measured scrub marks on the production wafers.

The calculated and used low probe contact force improved the wafer probing by eliminating cracks of UBM and Cu Pillar delamination

FEA calculations allow to improve the PCB stiffener design reducing a board deflection

Dabrowiecki, Behr

Follow-on Work

 It would be interesting to calculate the PCB deflection and performing verification tests for various temperature conditions from -50C to 150C

And also to perform the PCB deflection study using the maximum pin count available for active area of 93000 Direct-Probe™

 \bullet

Acknowledgments

We would like to thank colleagues at FEINMETALL for their help in preparation of this presentation. We are especially indebted to Lisa Schwarz, Uli Gauss, Jurgen Bauersfeld, Micha Frerichs and Gunther Böhm for his valuable comments.

Thank you

Dabrowiecki, Behr

June 7-10, 2015 2-0 1 5 SW Test