

SW Test Workshop

Semiconductor Wafer Test Workshop

June 7 - 10, 2015 | San Diego, California

Minimizing Parametric Probe Card Stray Capacitance

Larry Levy & Edwin Soler
FormFactor Inc &
GLOBALFOUNDRIES

- Definition Of Capacitance
- Importance of Minimizing Capacitance
- Background
- Capacitance of Probe Card Components
- Case Study Customer A
- GLOBALFOUNDRIES Case Study
- Summary

- Definition Of Capacitance
- Importance of Minimizing Capacitance
- Background
- Capacitance of Probe Card Components
- Case Study Customer A
- GLOBALFOUNDRIES Case Study
- Summary

Stray Capacitance Definition

- Stray capacitance is unintended and unwanted capacitance in a circuit.
 - Capacitance doesn't exist only within capacitors. In fact, any two surfaces at different electric potential, and that are close enough together to generate an electric field have capacitance

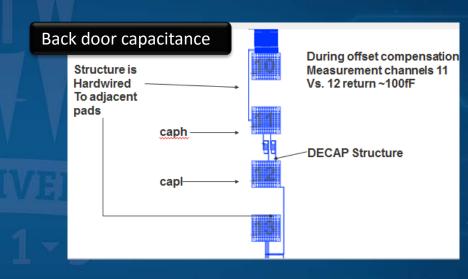
(Wikipedia)

- Definition Of Capacitance
- Importance of Minimizing Capacitance
- Background
- Capacitance of Probe Card Components
- Case Study Customer A
- GLOBALFOUNDRIES Case Study
- Summary

Why is Stray Capacitance Important for Parametric Testing?

Capacitance is used for process monitoring in some tests

```
Example:
Critical Capacitance measurement example, signature measurement of the technology


Classic measurement lpoly = length of poly = capacitance of poly finger capacitance
```

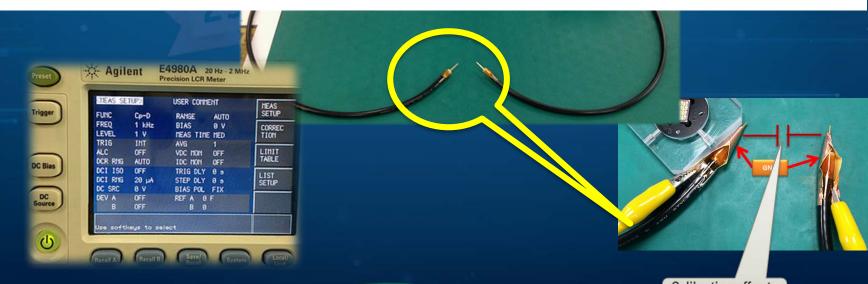
- Aggressive test structure designs (space limited test structure-pad sharing) becoming less tolerant to probe card stray capacitance
- Measuring lower capacitance values in new advanced nodes
 - Need the measurement to be more accurate
 - Some critical measurements are in the 100's of fF
 - Need tighter distribution as well

- Definition Of Capacitance
- Importance of Minimizing Capacitance
- Background
- Capacitance of Probe Card Components
- Case Study Customer A
- GLOBALFOUNDRIES Case Study
- Summary

Background

- Why lower capacitance became more important?
 - For Case Study Customer A
 some pads are tied together in
 the wafer

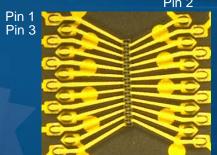
 In the case of GLOBALFOUNDRIES it was a desire to more closely match or improve on the existing technology


- Definition Of Capacitance
- Importance of Minimizing Capacitance
- Background
- Capacitance of Probe Card Components
- Case Study Customer A
- GLOBALFOUNDRIES Case Study
- Summary

Engineering Stray Capacitance Measurement Method

Agilent E4980A

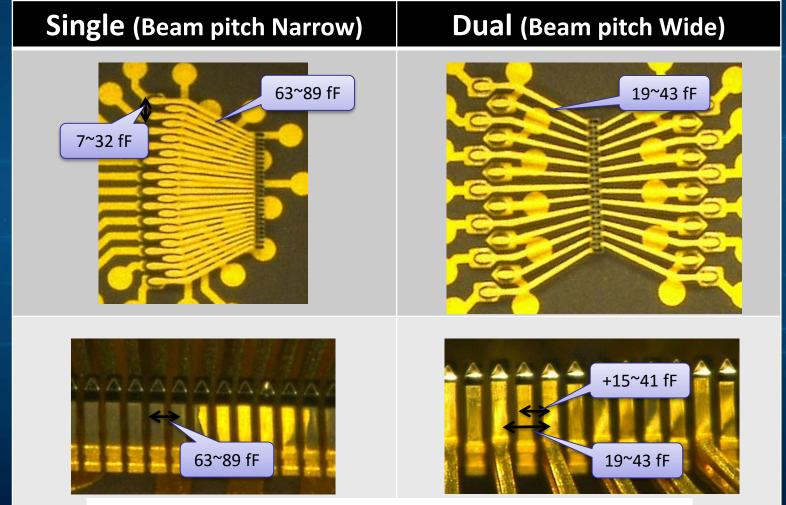
Very important to have an engineering capability that correlates to testers in the field


Capacitance of Probe Card Components

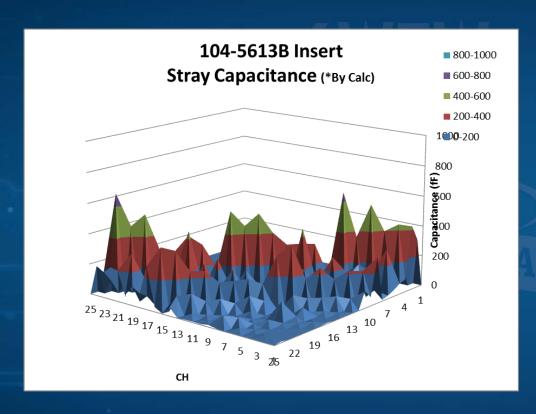
Probe Card Stray Capacitance

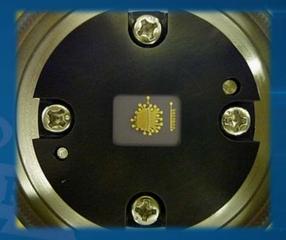
 Traditionally stray capacitance is measured from pin to pin in air and on the wafer

☐ Customarily pins have been designed to come from opposite sides for course pitch/larger pads

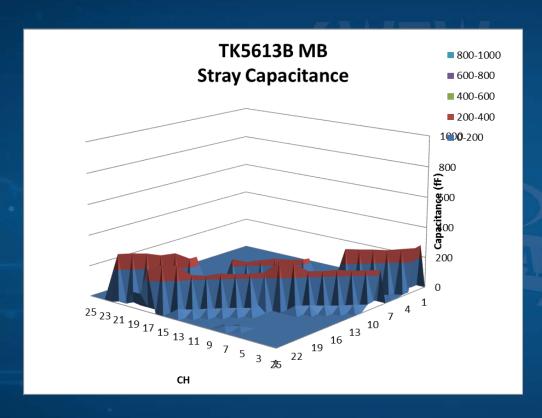

■ For tight pitch and small pads it is becoming more common for springs to come from one side to optimize probe mark alignment over time

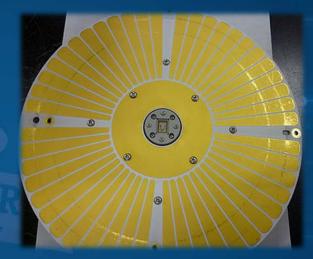
Pin 1


Prober Card Break Down Probes


25 pin 80um pitch design

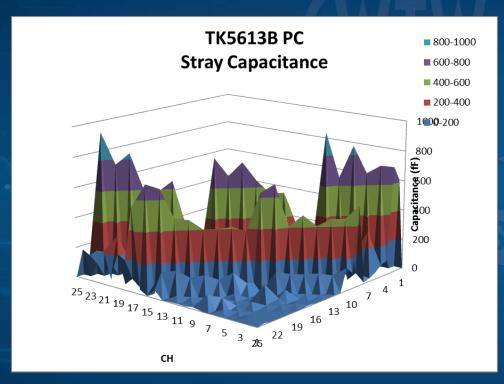
Beam to Beam clearance has the largest impact

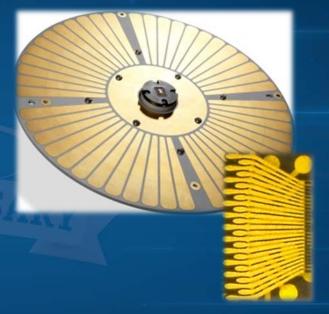

Probe Card Break Down Interchangeable Insert Unit



Max 682 fF Average 87.9 fF

Probe Card Break Down Mother Board



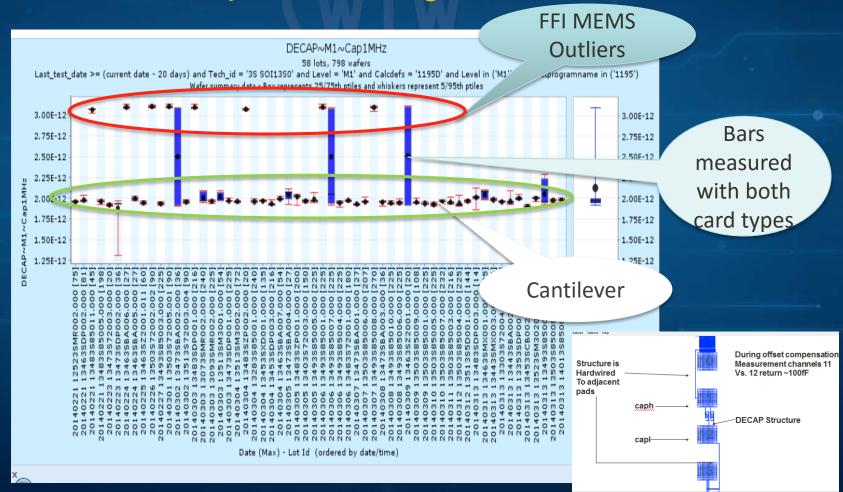

15

Max 300 fF Average 37.9 fF

Full Probe Card of Stray Capacitance

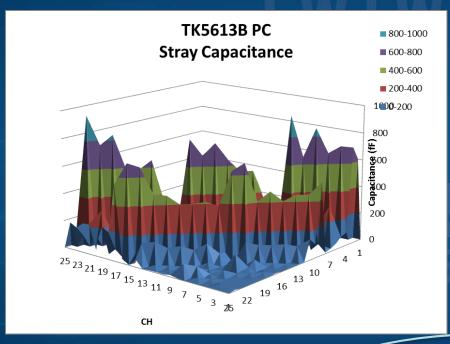
25pin, 80um pitch, Single Direction Using Standard Design Rules

Max 980 fF Average 126 fF


Stray Capacitance Probe Card Component Summary

- Components
 - Probes have minor contribution
 - Focus on MB
 - Focus on Insert
- Experimental Inserts were designed with both dual and single direction as well as a new MB
 - Redesigned to minimize capacitance and tighten distribution
 - Keeping the goal of maintaining current cost/price

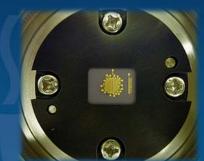
- Definition Of Capacitance
- Importance of Minimizing Capacitance
- Background
- Capacitance of Probe Card Components
- Case Study Customer A
- GLOBALFOUNDRIES Case Study
- Summary

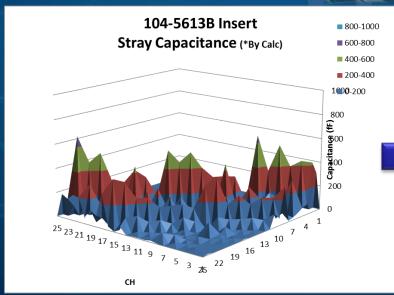

Case Study Customer A Problem Statement

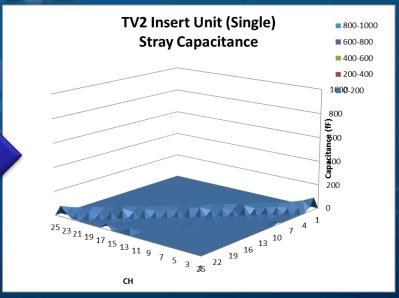
Outliers are pads tied together in the wafer

Original Full Probe Card of Stray Capacitance

Using Standard Design Rules (25pin, Single Direction)



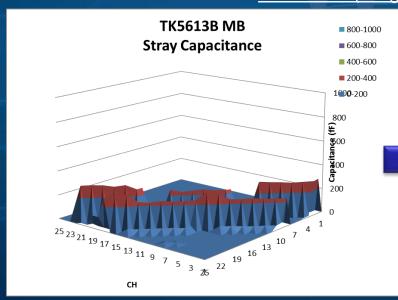

Max	980 fF
Average	126 fF

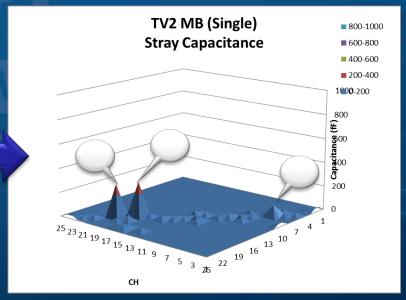

11 vs 12	85 fF
10+11 vs 12+13	1288 fF
10+11 vs 12+13+14	1351 fF

Probe Card Break Down Interchangeable Insert Unit

Max 85% reduced
Average 89%
reduced

Max	682 fF	11 vs 12	85 fF
Average	87.9 fF	10+11 vs 12+13	812 fF
		10+11 vs 12+13+	14 875 fF


Max	105 fF
Average	10 fF

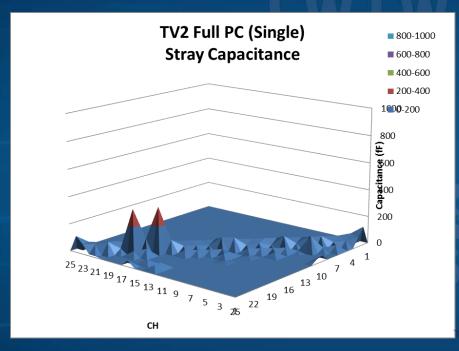

11 v	s 12	68 fF
10+	11 vs 12+13	164 fF
10+	11 vs 12+13+14	164 fF

Probe Card Break Down Mother Board

Average 84% reduced

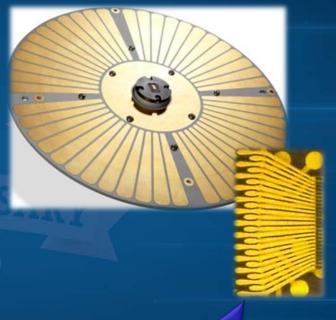
*Max was not improved much due to cost restrictions (3 higher capacitance)

Max	300 fF
Average	37.9 fF


11 vs 12	0 fF
10+11 vs 12+13	476 fF
10+11 vs 12+13+14	476 fF

Max	297 fF
Average	6.18 fF

11 vs 12	0 fF
10+11 vs 12+13	34 fF
10+11 vs 12+13+14	34 fF

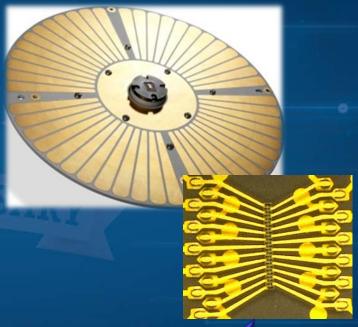

Full Probe Card of Stray Capacitance

Improved Design Rule(25pin, Single Direction)

Max	335 fF
Average	16 fF

11 vs 12	68 fF
10+11 vs 12+13	198 fF
10+11 vs 12+13+14	198 fF

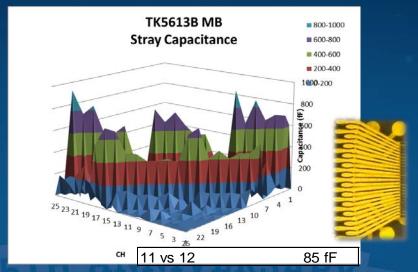
Max 66% reduced
Average 87% reduced


23

Full Probe Card of Stray Capacitance

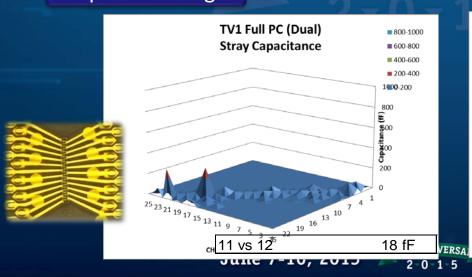
Improved Design Rule(25pin, Dual Direction)

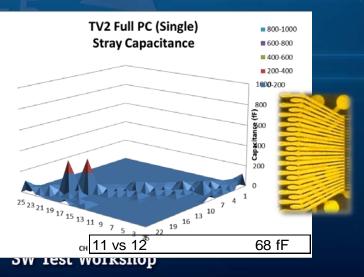
Max	295 fF	11 vs 12	18 fF
Average	11.8 fF	10+11 vs 12+13	121 fF
		10+11 vs 12+13+14	172 fF


Max 70% reduced Average 91% reduced

Case Study Customer A Summary

- We were able to drastically reduce full card stray capacitance
 - Although the bridged probes still demonstrated higher capacitance, they were now within acceptable limits


			<u> </u>	T T	1	Dual	4	Single
Stray	Capacitance (unit:fF)				Dual		Siligie	
Measu	ırement: Open circuit							
Sample		Cantilever	TK5613B		TV1		TV2	
Measurement By		Customer A		FFI				
Evaluation Ch	Full CH Max			980	295	70%	335	66%
	Full CH Average			126	11.8	91%	16	87% 📗
	11 vs 12	22	107	85	18	79%	68	20% 👢
	10 + 11 vs 12 + 13	44	1274	1288	121	91%	198	85% 👢
	10 + 11 vs 12 + 13 +14	35	1313	1351	172	87% 📗	198	85%


Case Study Customer A Final Results

Standard Design

Improved Design

- Definition Of Capacitance
- Importance of Minimizing Capacitance
- Background
- Capacitance of Probe Card Components
- Case Study Customer A
- GLOBALFOUNDRIES Case Study
- Summary

GLOBALFOUNDRIES Quality Policy

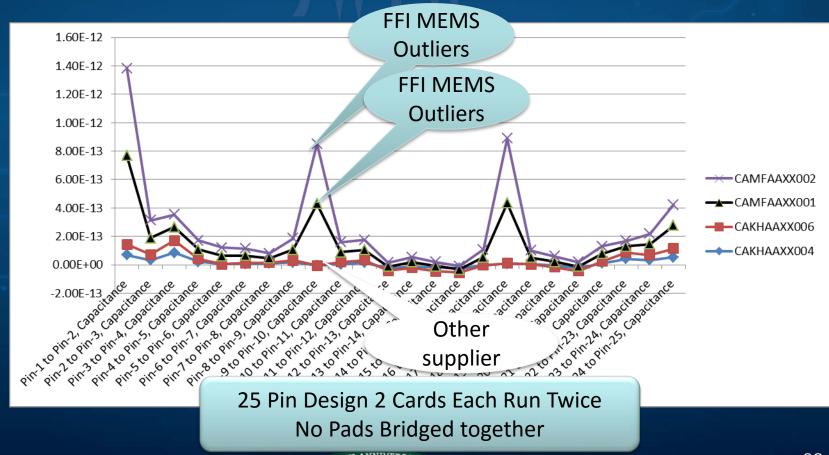
Quality is a way of life

GLOBALFOUNDRIES will exceed our customers' expectations through the dedication and continuous improvement efforts of our employees. To do so, our employees embrace and adhere to the following principles:

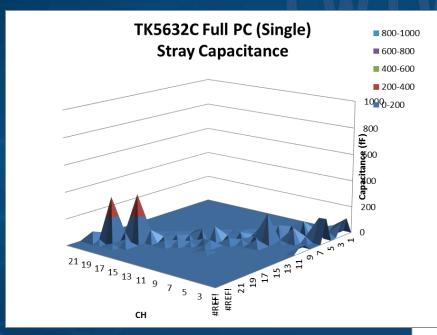
Customer First

We are committed to best-in-class service to our customers. "Customer First. Quality Always."

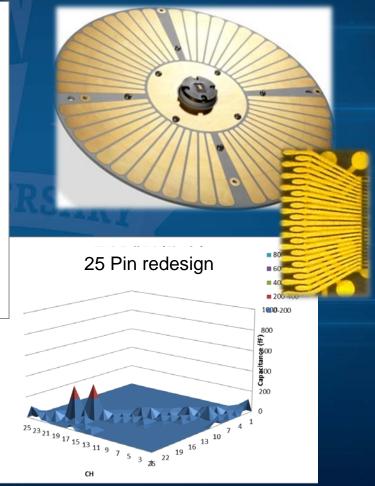
Committed People


We take ownership in creating a quality culture where our people strive to do "First Time Right."

Continuous Improvement


We strive for zero defects through continuous improvement in our

GLOBALFOUNDRIES Problem Statement

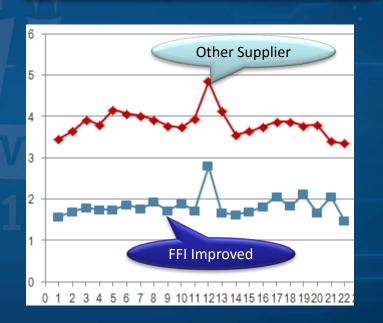

Standard FFI MEMS card has higher capacitance

22 Pin Single Direction Redesigned Measured at FormFactor

Redesigned 22 and 25 pin results very similar

GLOBALFOUNDRIES Evaluation

- GF does testing/qualifications at different frequencies during probe card validation
 - Different devices have different capacitance/conductance ranges
- Industry standard Capacitance and Conductance are (Test Freq):


```
1 fF to 1.2 nF and 10 nS to 7.5 mS (1 MHz)
1 fF to 10 nF and 1 nS to 6.3 mS (100 KHz)
1 fF to 100 nF and 0.1 nS to 6.3 mS (10 KHz)
10 fF to 100 nF and 0.1 nS to 0.63 mS (1 KHz)
```

Capacitance Comparison-Frequency 1 KHz

22 pin Card (Standard Design vs Other Supplier)

22 pin Card
(Standard Design vs Improved Design)

Measured with 25 channel tester

Capacitance Comparison-Frequency 10 KHz

Measured with 25 channel tester

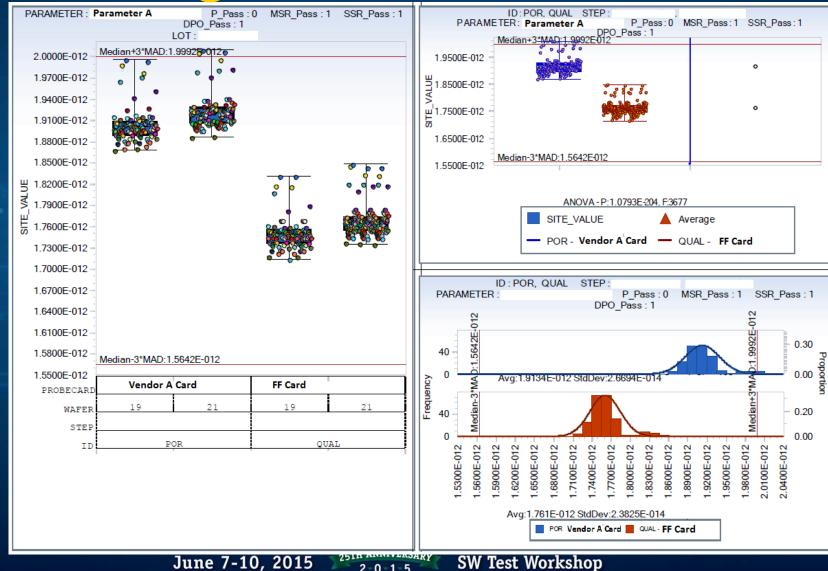
Capacitance Comparison-Frequency 100 KHz

22 pin Card (Standard Design vs Other Supplier)


Measured with 25 channel tester

22 pin Card (Standard Design vs Improved Design)

Capacitance Comparison-Frequency 1 MHz


22 pin Card (Standard Design vs Improved Design)

Measured with 25 channel tester

2x card shows same chart

1 MHz Plot Shows Improvement in Range and Distribution

- Definition Of Capacitance
- Importance of Minimizing Capacitance
- Background
- Capacitance of Probe Card Components
- Case Study Customer A
- GLOBALFOUNDRIES Case Study
- Summary

Stray Capacitance Summary

- Prior to doing parametric test a procedure is usually performed to null out the capacitance produced by the tester and probe card.
 Despite this effort, uncompensated probe card and tester stray capacitance can still be a problem
- The uncompensated stray capacitance can/did become a significant percentage of the final measurement, particularly with regard to leading edge technology test requirements
- By localizing the values of stray capacitance produced by the main components of the probe card we were able to reengineer the card, greatly reducing the stray capacitance and tightening the distribution while addressing the impact of potential structures in the wafer.
- Less capacitance is always better
 - Further improvement is possible if cost is not an issue

Acknowledgements

• IBM

- Jack Cassels, Ron Feroli, Lou Medina

GLOBALFOUNDRIES

Alan Romriel, Edwin Soler, Ronie Geronimo, Jackie
 Ngo-Hatchie, Carrie Demers

Keysight Technologies

Goto-san

FFI Japan

Yoshida-san, Kawamata –san

Thank You 2511 2 - 0 - 1 - 5