

SW Test Workshop

Semiconductor Wafer Test Workshop June 7 - 10, 2015 | San Diego, California

New Prober Interface Docking Evaluation

Daniel Stillman

Texas Instruments

intest Corporation reduce the cost of testing

• Objective

• Method

- Scrub mark size
- Automated Visual Inspection
- Thermal movement
- Docking deflection
- Auto-z
- Design
- Design changes
 - Materials
 - Stiffener modifications
 - Overhaul on the docking design

• Manufacturability / Production

Overview

Objective

 Evaluate new probe interfaces to confirm that interface can support high multi-site designs for bumps and pads devices.
Moving from 8DUT probe cards to 128DUT probe cards

 Evaluating how the probe interface performs with large probe cards with 1,000 to 20,000 probes

Probing temperatures of -40C to 140C

Method: Scrub Mark Size

Super bond pad of the all the sites during probing. Scrub marks need to be within probe pad area

June 7-10, 2015

2 0 1 5

SW Test Workshop

Method: Automated Visual Inspection

Misaligned Probes

Wafer Map AVI loss

Method: Thermal Movement

Looking at XYZ movement of the probes periodically during the probe operation

How far did the probe move from the last optical alignment

Method: Deflection

Where on the probe card does thesystem move and by how much

Probe card

Applying force and heat

Wafer and prober chuck

Method: Auto-Z

Baseline Thermal Movement

Base Line – Deflection at Temp

Measuring deflection at center and edge of the probe card

Probing Pattern

Baseline Modeling

When the heat is applied to the edge of the docking hardware a large dome affect occurs due to temperature applied to the stiffener

Baseline Docking Thermal Movement with Improved Step pattern

Stiffener B Modeling

- Model Reproduces Domed Center Shape.
- Center Deflection is +64 um. Measured is ~70.

Stiffener Type B Thermal Movement

Stiffener Type B

When the hot prober chuck is in contact with different areas on the probe card the temperature spikes

When the hot prober chuck is in contact with different areas on the probe card the deflection spikes matching with the temperature spikes

Stiffener Type C Modeling

- Model Predicts Slightly Domed Center Shape.
- Center Deflection is +60 um.

Stiffener Type C Deflection

Deflection on stiffener type C showed the tendency to drift during probing

Stiffener Type C Thermal Movement

Stiffener Type C Deflection With Hardware Modification

Stiffener Type C Thermal Movement With Hardware Modification

Design Type S Auto-z

Design Type S Deflection

Deflection of design type S does not have any large movements

Design Type S Thermal movement

Deflection Movement

Stiffener S Design Z drop happens immediately not requiring any temp soaking

Probe Card Topside Movement

Design Type S AVI Results

AVI Yield by Wafer

Conclusion

- Measuring the correct features on a probe card are important to evaluate production performance.
- Using the correct stiffener material is critical to controlling probe card performance .
- Docking and stiffener design will have impacts on how the card reacts at all temperatures.

Acknowledgments

Dori Robissa Kelly Daughtry Daniel Fresquez Kevin Kilpatrick Jim Oborny John Campbell **Timothy Blomgren Michael Freitas Frank Meza** Isaac Silva **Kevin Thompson Roy Green**

Texas Instrument Texas Instrument Texas Instrument Texas Instrument Texas Instrument Texas Instrument FormFactor FormFactor FormFactor Teradyne Teradyne Intest