

SW Test Workshop

Semiconductor Wafer Test Workshop June 7 - 10, 2015 | San Diego, California

Reduce wafer test with 3% to 10%⁺ by optimizing touchdown patterns

André Stoelwinder

OrangGO - PDF Solutions Service Provider Aagje Dekenstraat 51, 8023BZ, Zwolle, The Netherlands andre.stoelwinder@oranggo.com

Overview

- Introduction
- Objectives / Goals
- Background
- Traditional touch down optimization
- Tool Requirements
- Use Cases
- Achieved optimization results
- Talking about cost and savings
- Summary / Conclusion

This paper is not about

complicating stuff...

It's a pragmatic approach

to a simple day-to-day issue... effort needed... what will it save, cost wise...

June 7-10, 2015 2-0-1-5 SW Test Workshop

The issue

- Cost of test is under pressure
- Quality should be as high as possible
 - Post processing, outlier detection, test time optimization
- Probe card shapes dictated by product requirements
- Limitations of equipment
- Speed of change
- Need to have shortest wafer test time as possible
 - Without compromising on quality

Objectives

 Test as efficient as possible Least amount of touchdowns Only where it is needed Overcome limitations of prober Supported patterns Industry requirements - RF requirements Higher demands of parallelism Elevated temperature testing

PDF Solutions

Product lines

– Char

• PDF CV Test chip characterization. PB+ data analyzed.

Control

 Also known as Maestria: Control of process tools (FDC), and leveraging this data with other data types.

- Yield

 Also known as dataPOWER VSF: Ad-hoc engineering analysis, focused on both casual user and engineering users.

– Test

• Control of test cells, test optimization, efficiency, adaptive test. Leveraging with other data types.

More info at www.pdf.com

Traditional

Manual labor

- Looking at shape of probe card.
- Determining based on experience what might work or not.
- Trying to optimize manually by adding touch down positions.
- Finding out after one hour that maybe should have started differently.
- It's a puzzle.
- Time or TIME.

Traditional results

Good achievement – Saved 5% -> Happy

BUT

• What

What if...

Time... Precious

Need a tool that is...

The right balance between features and usability...

Tool requirements

- Ease of use & Fast
- Rule set
 - On wafer, off wafer, or...
 - Multiple touch downs, yes / no, or...
 - Process step support
 - Routing
- Debug capabilities
- Fine tune capabilities

Tool requirements

- Needs to support standard probers
- Needs to integrated solution in Exensio-Test
- Needs to support customer automation
- "Trial and Error" friendly

Tool History

• The Tool

- Initially released in 2004 in Cell Controller
- Improved over time

Customer feedback

- Standalone solution
- More complex probe card layout requirement

• 2014

- Made available as separate tool
- Re-designed architecture to support changing requirements
- Dramatic speed increase and feature improvements

Use Cases

1. Generic optimization

– No specific rules. How to determine best probe card layout?

2. Odd shaped probe card

- What if probe card size gets too big? Alternative shape.

3. Determine best number of sites

Evaluate number of sites against touchdowns.

4. Fine tuning strategies

Specific tester requirements handling.

Bench mark results

Actual results achieved

		Sites			optimized	Opt	Optimized		T									
Product	No Die		TD	Wafer test time	TD	Wafer test time	reduction	reduction	Comments									
А	2483	8	351	0:38:59	329	0:37:03	22	5.0%	Optimal layout									
В	554	4	156	0:41:29	149	0:39:43	7	4.3%	Same layout									
		16	16	16	16	16	16	16	16			2217	5:04:47	114	3.2%	Same layout		
С	33239									16	16	2331	5:14:45	2120	4:56:17	211	5.9%	Optimal layout
D	2260	16	210	0.25.56	184	0:23:39	26	8.8%	Same layout									
D	2209	10	210	0.25.50	158	0:21:23	52	17.5%	Optimal layout									
E	6074	32	228	0:40:12	209	0:38:32	19	4.1%	Optimal layout									
F	246178	32	22	22	22	22	27	27	22	22	22	8426	7 40 57	8110	7:08:08	316	8.7%	Same layout
			6426	/:48:57	7809	6:29:15	617	17.0%	Optimal layout									
G	2483	16	179	0:23:56	171	0:23:14	8	2.9%	Optimal layout									

Return Of Investment

Based on

- 15 wafer sort Cells, 5 Products / Cell
- 5% on Touch Down reduction
- 0.5% on index time reduction

Investment Running Cost Etc...

Benefits Return of investment

ROI Calculation

Use Cases Capex,Opex,Quality	(Custome	Process specific (custome	r input	PDF Solutions proposed inputs.		
Opex/year Input selection		Device Specific Average numbers se		Tool opportunities	Input selection	
Software tools	\$5.000	Product Test time (nett) (s) WS				
Training	\$1.000	Index time (s) WS		Process Efficency improvement %	5,50%	
Utilities (power cooling)		Average spare probecard factor				
Maintenance/y	1,5%	WS yield		Optimised (shorter) probe route % of test	0,50%	
Process cost				time		
(testting,scanning,probing,inking)		calculated tester hr rate (capex only)	\$			
Respider cost	\$12	Hardware margin		Business opportunities	selection	
number of touchdown before respiders	500.000			New business	0%	
probecard spending per year>device sp hw 1		calculated tester hr rate (capex+opex)				
		Hardware margin tester rate		Probecard related	Input	
		parallel sites ws		# touchdowns reduction %	5%	
Resources/year	Input	Back grinding cost/wafer		probecard lifetime extesion	5%	
Nesources/ year	selection	werking dave (7 d 34 brickift)		Probe card balancing lifetime effect -		
Operator hr cost		working days (7 d 24 hr shift)		(catastrophic failures)	2%	
Number of cells/operator 7		cell efficiency (including retest				
Operator brs/incident (rework-support)	, 10	,setuptimes,waittimes,)		Ontimization	Input	
Engineering br cost		Wafer cost		Optimization	selection	
Average probecard inspection/repair time		Device specific hardware cost	\$	wafer recipe generation engineering hrs	40	
(hrs) /lot 2		Average product cost (after wafersort)		optimal # sites calculation engineering hrs	8	
Engineering/technician allocation+overhead 10,00%		Wafer lot size 2				
/cell				Quality improvement		
		GDW	1	Yield improvement	0,50%	
		waferloading/unloading sec/wafer				
		Cleaning/PMI sec/wafer		1,2,3, crash site optimizer	n.a	
		Number of touched pads per device		100		

25TH ANNIVERSARY

2 0 1 5

June 7-10, 2015

SW Test Workshop

Salaries & Utilities

Asian Region Cost			Π		
source JETRO			П		
(Japan external Trade organization)					
Region		Worker/hr	Ε	Industrial Estate sqm/year	Elec kwh
			Π		
Shanghai		\$2,81		\$540,00	\$0,13
Guangzhou		\$2,47		\$324,00	\$0,12
Shenzhen		\$2,05		\$324,00	\$0,12
Hong Kong		\$10,12		\$1.884,00	\$0,19
Taipei		\$7,14		\$216,00	\$0,13
Singapore		\$7,68		\$916,00	\$0,23
Bangkok		\$2,15		\$252,00	\$0,11
KL		\$2,15		\$288,00	\$0,11
Batam		\$1,11		\$144,00	\$0,06
Manila		\$1,88	Ц	\$240,00	\$0,27
Cebu		\$1,36		\$132,00	\$0,24
Average 2012		\$3,72		\$478,18	\$0,16
Indexed	20,00%	\$4,46	Ц	\$573,82	\$0,19
Engineering US/Europe					
Cell utilities		KWh		Energy Cost/hr	\$11,64
Tester KWh		28			
Handler/prober/probecard repair/other		10			
equipement Kwh					
Cooling cap 1kBTU~0.3KWh		22			
Other facilities (ligth , compressed air ,		2			
vacuum , etc , etc)					
Total Power		62			
	year 2	year 3	a	year 5	
Power cost increase (estimated)	5,00%	10,00%		10,00%	
Resource cost increase (estimated)	8,00%	9,00%		12,00%	

Process Cost Cell / Year

Process cost Para	ameters cell/y	ear		
Parame	eters	Optimizer <>Testcell	Value/year	Relative
Capital Expenses	Equipment	Tester , prober(depriciated)	\$83.333	
	Infrastructure	Building/facilities (depriciated)	\$7.886	
		Total	\$91.219	27,82%
Operational Cost				
		Probecards ,etc,etc (depriciated)		
	Hardware	investments	\$60.450	
	Software	License	\$5.000	
	Training	Machine/handling/software	\$1.000	
	Utillities	Power /cooling	\$97.780	
		Repair/tooling/contracts (ex		
Maintenance		respider probecards)	\$7.500	
	Process cost			
	(probe specific)	Total Probecard respider cost	\$51.903	
		Total	\$223.633	68,20%
		Operators / Engineers		
Resource allocation	Resources/staf	Line/Prod/Test/QA/IT	\$11.636	
	Resource cost			
	(probe repair	Probecard		
	specific)	maintenance/inspection	\$1.413	
		Total	\$13.049	3,98%
		Grand Total	\$327.900	

Optimization Cost Saving / Cell

Pa	arameters	unction Parallic									
Inv			Optimizatio	n cost saving o	opportunities	%	% of	Value			
Inv					Efficiency improvement						
	vestment related	Efficiency improvement	Reduced in due to incr	ivestments eased UPH.	ATE testers and handlers needed for the same capaci equivalent for depriciation and facilities needed	^{ty,} 5,50%	Total testcell CAPEX/year	\$5.017	\$8.625	\$5.017	
Ор	perational related	Hardware	Reduced O cost	perational	Less Loadboard/spiders for the same capicity, including repair/maintenance cost	5,50%	Total specific hw+maintenance	\$6.922			
		F ##: -:	Reduced O	perational		F F00/	Rest of operational	AF 370			
						Effic	iency improver	nent			
Vestment related Efficiency improvement Staff cost		Reduced investments due to increased UPH.		ATE testers and handlers needed for the same capacity, equivalent for depriciation and facilities needed			5,50%	Total testcell CAPEX/year	\$5.017		
		Staff cost recipe				resources (manufacturing)			40	engineering staff	\$1.495
			balancing/ control	overhang	damage (membrane/pyrami types)	d 2,00%	cost	\$1.209	Operational related		
					Process quality improvement						
Quality Process		Potential yield immprovement	Due to bett (probecard potential h	ter process) control ligher yield		0,50%	Real product cost after test	\$8.625		Resource related	
		Product quality impro		Product quality improvement					Probecard respider		
New Opportunities		Business	New produ	cts enquiries	New business opportunities due higher capacity and higher outgoeinging quality level.	5 / 0,00%	Percentage of total test cell revenue/year	\$0	Quality Process		

-1-5

SW Test Workshop

25TH ANNIVERSARY June 7-10, 2015

22

Return Of Investment

Based on

- 15 wafer sort Cells
- 5 Products / Cell
- Saving
 - 5% on Touch downs
 - 0.5% on index

Break-even

- 3 cells / 1 product
- Positive within 1 year

Return of investment							
Year	1	2	3	4	5		
Total cost of process	\$327.900	\$327.900	\$327.900	\$327.900	\$327.900		
Total cost reduction	\$35.359	\$36.077	\$36.402	\$36.458	\$36.570		
Exensiko-Test PO product cost	\$75.280	\$67.000	\$67.000	\$67.000	\$67.000		
	One Cell operation						
Year to year cost reduction	-\$39.921	-\$30.923	-\$30.598	-\$30.542	-\$30.430		
Cumulative year to year ROI	-\$39.921	-\$70.844	-\$101.442	-\$131.984	-\$162.414		
	Multiple Cell	operation					
Year to year cost reduction	\$455.104	\$474.153	\$479.028	\$479.870	\$481.554		
Cumulative year to year ROI	\$455.104	\$929.257	\$1.408.285	\$1.888.154	\$2.369.708		

Conclusion

- Achieve better optimization strategies.
- Savings are in OPEX and less in CAPEX or resources.
- Touchdown reduction between 3% 10% with outliers above and below.
- Independent of prober software releases.
- Short ROI, depending on number of systems and products, but easily within 1st year.

TI Paper

	8:00 AM – 10:00 AM	SESSION 8: Moving from x1 to x123 SOIC Probe Efficiency Improvements						
	8:00 – 8:30	Leveraging Multiprobe Probe Card learnings to help Standardize and Improve parametric and WLR Testing Brandon Mair (Texas Instruments – Dallas, TX, USA) Presenter: Brandon Mair (Texas Instruments – Dallas, TX, USA)						
$\left(\right.$	8:30 – 9:00	Probe Route Optimization and its effects on the efficiency of test Daniel Fresquez and Ms. Rachel Koski (Texas Instruments – Dallas, TX, USA) Presenter: Rachel Koski (Texas Instruments – Dallas, TX, USA)						
	9:00 – 9:30	<i>New prober interface docking evaluation</i> Daniel Stillman (TI – Dallas, TX, USA) Presenter: Daniel Stillman (TI – Dallas, TX, USA)						
	9:30 – 10:00	Review of New, Flexible MEMS Technology to Reduce Cost of Test for Multi-site Wire Bond Applications Daniel Stillman (TI – Dallas, TX, USA) Cameron Harker, Tin Nguyen, Doug Shuey, and Frank Meza (FormFactor – Dallas, TX, USA) Presenter: Daniel Stillman (TI – Dallas, TX, USA)						

Thank you

 Users of the tool - For providing actual results. Providing actual use cases. You the audience For spending this Sunday afternoon. SW Test Workshop – For setting up this 25th conference.

