

SW Test Workshop Semiconductor Wafer Test Workshop

"SMART" Laser Drilling for Advanced Vertical Probe Card Manufacturing

Alan Ferguson, Ph.D
Oxford Lasers

June 5-8, 2016

Overview

Introduction
Advanced Vertical Probe Cards
Historical Review
"SMART" Program
Results
Future R & D Targets
Summary

Introduction

Guide Plates

- Are an essential component in Vertical probe cards.
- Consist of 1000's micro-holes through which probes are fitted, ensuring accurate location of each probe.
- Typical probe card uses several guide plates.

Guide Plate Features

- Accurately locate probe pins.
- Pin size and pitch to match DUT.
- Appropriate current capacity, impedance, contact resistance etc.
- Appropriate guiding/sliding of pins, scrub, wear, cleaning etc.
- Mechanically stable substrate.
- Match CTe to DUT.

Advanced Vertical Probe Cards

Advanced Vertical Probe Card Types

- Cobra
- Micro-pogo
- MEMs

Minimum Probe Pitch

- Reducing from 120um to <50um.
- Driven by transition from solder bump to copper pillar.

Materials

- Ceramics (SiN, Alumina, Macerite, Photoveel).
- Polymers: Polyimides, (Kapton, Vespel, Cirlex), PEEK.

Historical Review

SW Test Workshop Semiconductor Wafer Test Workshop

2015

2008

Drilling Methods and Materials for Advanced Vertical Probe Cards

Alan Ferguson, Ph.D Oxford Lasers 2014

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

Challenges and Solutions in future designs of Vertical Probe Cards

Alan Ferguson Oxford Lasers

IEEE SW Test Workshop Semiconductor Wafer Test Workshop Dr. Alan Ferguson

Oxford Lasers

Comparison of Drilling Rates and Tolerances of Laser-Drilled holes in Silicon **Nitride and Polyimide Vertical Probe Cards**

June 8-11, 2008 San Diego, CA USA 2005

Laser Micromachining: A flexible tool in **Vertical Probe Card Manufacturing**

D.Karnakis, M.Knowles

Oxford Lasers Ltd., Moorbrook Park, Didcot OX11 7HP (UK)

Historical Review

What we have shown and presented:

```
Demonstrated the use of Lasers in Probe Card Drilling (2005)

Demonstrated Practical and Economic Drill Speeds (2008)

Demonstrated the Over Coming of Challenges in the Industry (2014)

Demonstrated a variety of drilling methods and materials (2015)
```

Now to the next Level:

Project SMART

Smart

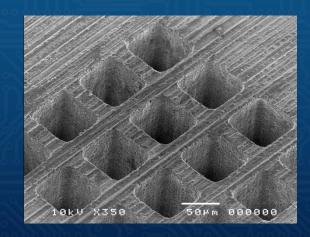
Smart is a UK Government fund to help companies, to engage in R&D projects in the strategically important areas of science, engineering and technology

Started December 2015

Innovate UK Smart – Non Round Holes

Why Square or Rectangular Holes?

More and more requests for rectangular / square micro holes Probes can achieve softer touchdowns

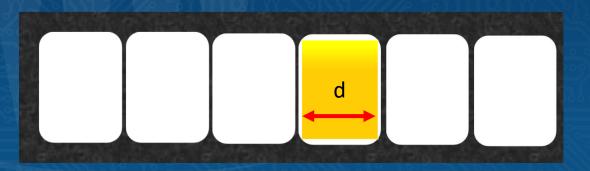

Probes are of lower cost

Why Laser Drilling?

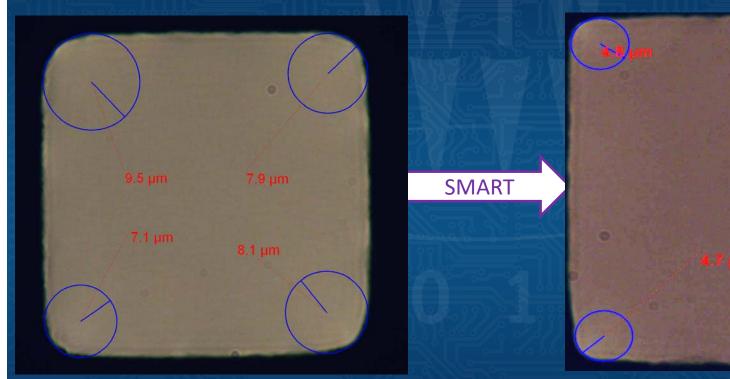
Can't make a square hole with a round mechanical drill bit.

What are the Issues?

Rounded / Square corners Hole Taper Stability Speed

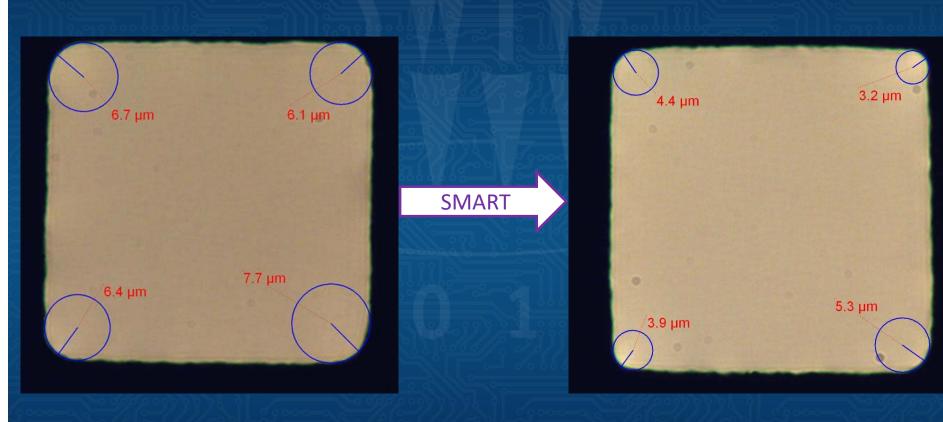


Goals of the Project


- a) Decrease the corner radius for square holes
- b) Maintain taper at under 2µm for all holes
- c) Improve the positional accuracy of microholes
- d) Improve the roundness of round holes
- e) Improve / Reduce hole size variation
- f) Increase the drill speed for all holes

Importance of Reduced Corner Radius

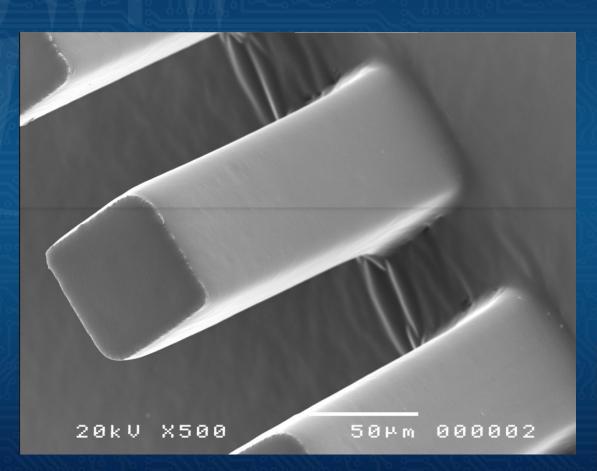
While the pin size
"d" is the same,
the larger corner
radii reduces the
possible minimum
pitch of holes



4.9 µm

4.7 µm

380um thick Silicon Nitride


250um thick Silicon Nitride

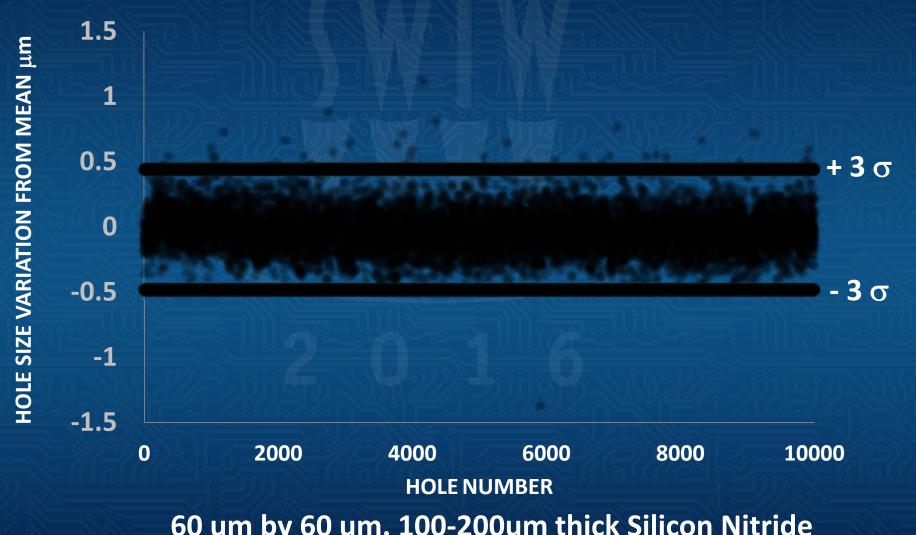
Material Thickness Si ₃ N ₄	250μm	380µm
Old Method Range of Radii	6-8µm	7-10μm
New Method Range of Radii	4-5μm	4.5-5.5

Cast of Square Hole

Smooth Hole Profile

Low Hole Taper

What's Next


Next Production Steps:

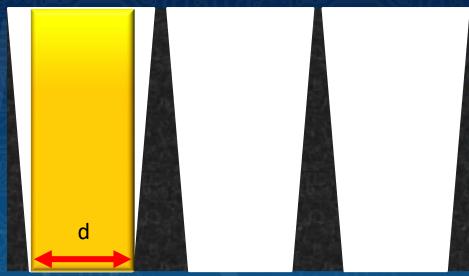
A.) Vigorously test and productionise Corner Radius Method

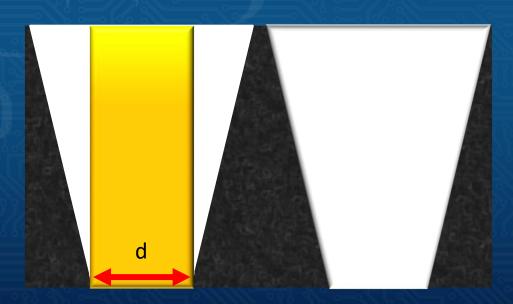
Next R&D Smart Steps:

- A.) Reduce Hole Size Variation
- B.) Reduce Hole Taper

Hole Size Variation for 10,000 Holes

60 um by 60 um. 100-200um thick Silicon Nitride SW Test Workshop - June 5-8, 2016





60 um by 60 um. 200-300 um thick Silicon Nitride

Importance of Hole Taper

While the pin dimension "d" is the same, if we reduce the entrance diameter, then this reduces the minimum pitch of the holes

Summary

- Smart Progress
- Tighter Corner Radius possible
- Research and Development is never complete there are always further improvements to be made