

SW Test Workshop Semiconductor Wafer Test Workshop

Innovative Laser Processing and Drilling Techniques for Future Probe Card Applications

Chih-Chang Hsu, PhD Hung-Lung Chen, CMO

K-Jet Laser Tek Inc.

June 5-8, 2016

Outline

- Company Profile
- Motivation
- Opportunities of Laser Processing
- Si₃N₄ Probe Head (PH) by Laser Process
- Solutions
- High Aspect-Ratio Micro Hole
- Future Work

Company Profile

- ◆Founded in 2001, Located in HsinChu Science Park, Taiwan
- Over 15 Years Experience in Laser
 Machining Equipment and Process
 Development
- Products: Laser Turnkey System and Production Equipment
- Service: DPSS and Excimer Laser
 Job Shop

Applications

- Advanced Package
- •MEMS & Filter
- Touch Panel
- Slotting / Grooving
- Marking & Engrav

Glass

Silicon

- Advanced Package
- MEMS
- Slotting / Grooving
- Scribing & Breaking

- Probe card MD
- Biological
- •3C Products
- •IC substrate

Polymer Metal

Ceramic

- •LED Package
- PZT Cutting
- Component Cutting
- Probe Card UD/LD

Motivation

- Market –Sales of Probe Cards
 - Market growth from \$1.4 Billion in 2015 to \$1.7
 Billion in 2020 (VLSI Research Reported)
 - Advanced Probe Cards (Vertical, MEMS)
- Industry Tendency for Vertical Probe Card
 - High Pin Counts
 - Fine Pitch
 - Rectangle or Irregular Hole Shape
 - New Materials for Probe Head

Challenges

High Pin Count

- Longer mechanical drilling time
- Lower yield rate and higher cost

Fine Pitch

- Material strength
- Collapse between holes

Rectangle or Irregular Hole Shape

- Traditional mechanical drilling unavailable
- New Material for Probe Head
 - Harder material need brand new machining technique

Opportunities of Laser Processing

- Advantages of Laser Drilling
 - Much higher throughput
 - More consistent yield rate
 - Non-contact drilling benefits tight hole pitch
 - Arbitrary geometry available
 - Wide range of materials, like Si₃N₄, Sapphire,
 Zirconia...
- Si₃N₄ is next generation material for VPC, but its hardness makes it difficult for mechanical. Laser process just happens to be the best choice.

Si₃N₄ PH by Laser Process

Non-Laser Process

- Material Thinning/Polishing
- Lamination

Laser Process

- Laser CutPocket Slot, Card Contour
- Laser Drill
 Counter-Bore Holes, Screw Holes,
 Micro-Holes, Align/Pin Holes
- Laser MarkSerial No./Logo

Pocket Formation

Thinning and polishing material into specific thickness(+/-10um) and surface flatness

- Laser cutting slot on top material
- Lamination by adhesive of glue

Laser cutting perimeter to specific shape and dimension

3D pocket completed!

Counter-Bore/Screw Holes

Laser marking logo and alphanumerical texts

Laser drilling Counter-Bore with specific depth (>1mm) and flatness

Laser drilling through Screw Holes

Micro and Pin Holes Generation

Laser Micro-Hole Drilling

Laser Pin Hole Drilling

Drilling Micro-Holes and Pin Holes at the same time to ensure position accuracy

Process Issues

Lamination

- Adhesion of glue breakdown during high temp.
 probing environment
- Screw/Pin Hole
 - Need smooth side wall and precise/straight hole
- Counter-Bore Hole
 - Need flexible bore hole depth capability
- Micro-Hole
 - Taper needs to be avoided
 - Prefer higher AR hole to multilayer lamination

Solutions

Lamination

High Pressure

Bonder

High Temperature >350 °C

High Pressure

SW Test Workshop - June 5-8, 2016

Screw/Pin Hole

- Drilling Screw/Pin hole after lamination, No align issue
- Straight hole from top to bottom, less than 20um taper and up to 1mm thickness
- Hole dimension accuracy within 5um
- Smooth sidewall without debris

Counter-Bore

- Directly drilling Counter-Bore hole AFTER lamination
- No depth limitation on Bore area, more design flexibility
- Good flatness on Bore plane
- Arbitrary Bore and Screw hole size

Counter-Bore Hole

High Aspect-Ratio Micro Hole

- Laser drilling high aspect-ratio hole tends to have taper issue
 - -5-10um for 300um of Si_3N_4
 - -20-30um for 500um of Si_3N_4
 - Hole will collapse in Fine Pitch

K-Jet developed a state-of-art method - "DeepWell Drill" technique to overcome the taper issue, and implement complete straight micro-hole up to 800 um thickness on Si_3N_4 .

Capabilities of DeepWell Drill

- Available Hole Size(Round): 35um 150um
- Thickness: Up to 800um, move on 1mm.
- Tolerance: +/-2um typically, both ent&exit.
- Spacing: 15um between holes without collapse!
- Materials: Not only available on Si₃N₄, also work on PhotoVeel, Sapphire, Zirconia, Silicon, Cirlex.
- Application: Not only drill straight round hole, also high AR irregular hole shape is possible.
- DeepWell Drill directly cutting MEMS probe is under investigation.

DeepWell Drilled Micro-Holes

DeepWell Drilled Micro-Holes

DeepWell Drilled Micro-Holes

Hole: 60um

Spacing: 12um

Hole: 70um Spacing: 32um

Evaluation

- A Si₃N₄ upper die was fabricated by bonding and laser process to evaluate the performance.
- Micro-Holes were measured by Nikon VMR3200
- Total Thk.: 0.8±0.01mm
- Pocket Thk.: 0.254±0.01mm
- Pin Holes: Φ2/2.5+0.005/0.010mm
- μHoles: Φ71um±1um
- Numbers: 1,184

True Position Accuracy(um)

Future Work

- Evaluate Die thickness up to 1mm or more.
- Evaluate micro-hole size down to 25um(1mil).
- Develop high aspect-ratio rectangle and irregular hole, expect up to 500um or more.
- Evaluate alternative material for probe head, especially hard and transparent material like sapphire which might be good replacement for upper die.

Thank you!