

SW Test Workshop Semiconductor Wafer Test Workshop

Probing for WLP Evaluation

Clark Liu

Chip Probe Operations Division Powertech Technology Inc.

Overview

- Background
- For WLP Probing Evaluation

Make a Test Vehicle to validate and choose Right Product.

Quickly Feedback to Suppliers for CIP.

(1)CPB Test Vehicle

(2)RDL Test Vehicle

(3)WLCSP Memory High Parallel Probe card

- Future Work for the WLP Probing solutions
- Conclusions

New Requirement from User and Supplier Side?

User

1.R&D Team **get Request** to meet the New WLP Technology Requirement

2.R&D Team **Looking for suitable** Supplier Product meet the target

3.MFG Team consider the Schedule /Cost/Production /Performance issues **Supplier**

- 1. Sales team Buildup the New Business to meet customer Requirement
- 2.Marketing/R&D team Understand and Make Solution meet customer criterion
- 3.MFG Team Buildup the product meet the **Spec**

Choose from User and Supplier Side?

User

L)Consider Production Yield Performance/Cost/Schedule

(2)Consider Supplier Product meet the New Technology Product

(3) Which is the best solution

Supplier

Gap?

•	Alignment	± 0.3 mil
	Planarity	± 0.3 mil
	Leakage	I/O:10 nA@10 V Power/Ground: 20 nA@10 V
(ip D	Diameter (tolerance)	±3 um
	Tip Shape	Flat
1st	Layer Tip Length	10+/-1 mils
Max. O	D (from first contact)	60um
	Max. Current	200 mA
Te	mperature Range	-40~125℃

Working from User and Supplier Side?

Idea for WLP Probing Evaluation

DOE Tool @ WLP Probing Evaluation

Probing Depth Probing Damage

WLCSP

DOE Tool Model Evaluation

Different Contact Position

RDL

Burno Danage

CPB

Consider for both I/F and Material as New Requirement from Schedule / Cost / Resource / Performance Evaluation Factors

(1)CPB Test Vehicle@35(D)/60(P)um

CPB Mechanical DOEs

DOE1- Normal Contact

- ① Probe contact to bump center.
- ② Check OD vs. Probe Mark Area <25%.</p>
- ③ Make OD vs. Probe Mark Area Chart

DOE2- Worst Contact

- Probe contact shift 10/20um to bump center.
- ② Use DOE1 recommend OD for probing.
- ③ Check the cap w/i any creak at the worst condition.

DOE3- Repeat Contact

- Use DOE1 recommendOD for probing.
- ② Confirm maximum contact counts which don't make bump crack or deform.

Repeat contact

Normal Contact DOEs

OD	Width	Length	Probe mark area (<25%)		P	robe	marl	k	
10um	13.76um	13.01um	11.48%	۰	•	٠			0
50um	17.35um	16.89um	18.78%	0	•		0		0
100um	20.79um	18.99um	25.35%	8	9		8	•	0

OD (um)	Probe Mark Area(%)		Probe	Mark		
90	7.68%					•
100	9.15%					
110	8.28%	•	•	•	•	

OD (um)	Probe Mark Area(%)			Prob	e Mark		
10	1.69%						
50	7.67%	0		9		9	0
100	11.83%	0	0	0	9	9	(4)

<25% Probe mark Area

No CPB Damage <25% Probe mark Area

Worst Contact DOEs

Shift 10um

Shift 20um

ОД	Focus	Probe Mark Area (%)		Probe	Mark	(Con	tact)	
	74		0	•	•	0	•	
30um	72	17.18%				-		
	70		*					
	76		0	0	•	0		6
90um	74	25.75%	9	0	•	*		9
	72		9		8	杂		*

OD	Focus	Probe Mark Area (%)		Prol	oe Mark	(Conta	ict)	
	74		(9				•	
30um	72	16.30%	(6			(8)		8
	70		(6					
	75		(0		•			•
60um	73	20.98%	14	0			0	0
	71		10	(8		(9)	(6)	*

Shift (um)	OD (um)	Probe Mark Area(%)			Probe	Mark	
	40	7.02%					
10	70	7.82%					
	100	8.18%	•	•	•		

Shift (um)	OD (um)	Probe Mark Area(%)	Focus			Prob	Mark Mark		
	40	11 000/	79						•
	40	11.08%	82				•		•
20			81						•
	70	12.2%	85	•	•	•		٠	÷

OD (um)			Probe	Mark	
10	*				
40	•		49	6	
70	0	49	0		

No CPB Damage <25% Probe mark Area

CPB Damage <25% Probe mark Area

Repeat Contact DOEs

Contact counts	Average Area (%)	Maximum Area (%)			Probe	Marl	ζ	
2	18.54%	20.76%	*	0	9	0	9	
4	21.29%	24.37%	0		9	*	0	8
6	23.46%	25.00%	*	9	0	0	0	۱

	Contact Counts	Average Area (%)	Maximum Area (%)			Probe	Mark		
1	20	10.76%	11.59%	•	•	•	•		•
- -{	40	12.13%	14.24%	•	•	•		•	
	100	13.92%	14.90%	•	•	•	•	0	•
	200	14.50%	16.10%		•			•	•

Contact Count	Probe Mark Area(%)			Prob	e Mark		
2	9.75%	0	0	9	(3)		
10	13.34%	0	9	0		0	1
60	25.92%	0	0	0	0	0	6

No CPB Damage <25% Probe mark Area

What Learning from CPB DOE

Force/OD/Accuracy Factors

(2) RDL Test Vehicle

Add Soldering wires for E-Test

Change Stiffener to Acrylic for Reduce Cost/Cycle Time

RDL Mechanical/Electrical DOEs

DOE1- Normal Contact

- ① Probe contact to RDL Pad (PI Opening) center.
- ② Check resistance w/i difference OD.
- 3 Make OD vs. Resistance Chart

DOE2- Continuous Contact

- ① Using same OD Probing
- ② Check the resistance change after continuous contact.
- 3 Make OD vs. Resistance Chart

RDL DOE: Over Drive / RDL Probe Mark Length / Resistance

Clark Liu

RDL DOE: Repeat Contact Resistance

What Learning from RDL DOE

Probe mark Inspection Issue

Probe mark Inspection still Keep the learning curve for HVM

(3) WLCSP Probe Card

High Parallelism Capability for Mass Production Case

Thermal Stable Capability proven on large active area

"Qi-Lin"Probe head size: 118mmx130mm

• Production OT: 160um from 1st touch

◆Probe force @ recom OT: 20-25g per pin

•Cleaning Freq: ~ every 300 TD

•Life-time: >500k

As Engineering DOE Data to extend the High Parallelism Capability for NPI, Make the Production Card for HVM.

WLCSP Probe card DRAM_64DUTs

HT Thermal Soak Time

Probes

Probe Mark

WLCSP Probe card_Flash_256DUTs

HT Thermal Soak Time

Probes

Probe Mark

WLCSP Probe card_Probe Check

Future Work:

(1) AOI for WLP Probe mark?

CPB RDL **WLCSP**

User Expect Data Data Mining:

(1) ProberPerformance(2)Probe cardPerformance

[Keep Under Development]

AOI

Probe

mark

Analysis

Future Work:

(2) Build 3D Microscope for WLP / Probe card Engineering Analysis

CPB(x5000)

Check both for Wafer and Probe card Inspection and Measurement

Quickly Feedback and Learning for Each Team Vender A **DOE A** PTI **DOE B** Vender B **DOE C Vender C Probe Contact Probe card Challenge** Cooperation Characterize **Material Performance Probing New DOE Probe AOI** Clean **Vision** E-Test Vender Vender Mark Model

SW Test Workshop - June 5-8, 2016

Recipe

Conclusion

Business

DOE Tool Evaluation

New **Application**

Saving Cost

Validation

New Concept

Share Technology

MFG Technology

Acknowledgments

We would like to thank colleagues for their support in preparation of this presentation.

(1)FFI: Alan Liao / Daniel Liang

(2)JEM: Atsushi Mine / Chikaomi Mori

(3)MPI: Mark Sun / Albert Fan / Curtis Hsu

(4)PTI: Henry Tseng / William Mo / Toby Chen

Thank you!