

SW Test Workshop Semiconductor Wafer Test Workshop

Inter-changeable Pre-bump Probe Solution & Challenges

Author: Yang Qu

Presenter: Wei Liang Sio

June 5-8, 2016

Overview

- Background
- Challenges brought by WLP
- Inter-changeable solution
- Experimental data
- Challenges
- Conclusion and further works

WLP Introduction

- WLP = Wafer Level packaging
- Fan-In WLP and Fan-Out WLP

Advantage

- Smaller chip size
- Shorter electrical path
- Reduced parasitics
- Lower cost

Fan-Out WLP

Challenges Brought by WLP

- Negative impacts
 - Prolong process learning cycle
 - Slow response to line issue
 - Extra cost for engineering debugging

Role of Test in Process Learning Cycle

Wafer sort

Discover issue

Analyze possible root cause

1 month Process split cycle time Fab-out

Test

Analyze test result

Problem solve?

YES

Case Close

Logistic

Re-distribution Layer

Grow bump

Bump check

Wafer sort

2 weeks cycle time

SW Test Workshop - June 5-8, 2016

Role of Test in Process Learning Cycle

To resolve process issues:

- Multiple learning cycles are required
- Cycle time is impacted by packaging and testing
- Shorten process learning cycle = faster time to market

Challenges Brought by WLP

- Negative impacts
 - Prolong process learning cycle
 - Slow response to line issue
 - Extra cost for engineering debugging

Slow Response to Issue

Line Excursion

- Line excursion: >10% of the monthly loading has been affected.
- Hit rate 4~10%, yield loss ~5%
- Shorten response time to line issue = faster yield recovery

Challenges

- Obstacles to perform pre-bump probing
 - Differences between bumps and pads
 - Extra hardware cost / lead time
 - Additional resources to customize test program
 - Potential damage on underlying structure

Proposed Solution

Employ customized FLMO to replace RDL, enabling probing of un-bump wafers

SW Test Workshop - June 5-8, 2016

Yang Qu

10

Advantages of Proposed Solution

	Inter-changeable Probe head	Customized Pre-bump probe card	
Lead-Time	5 weeks	7~8 weeks	
Design Change	1 week	7~8 weeks	
Cost	FMLO + Pointed PH	100% fresh fabrication	

- Shares same PCB with bump probe card
- Uses same test program as production wafer sort
 - No program modifications needed
 - Full test coverage as production program

Case Study

Product Specifications

- Bumps: 225

- Al pad: 727

- Al pad min pitch: 75um

Pad size: 50um octagonal

Project life cycle

1.5~2year

Case Study

Needle specification

Tip Dim. (um)	Flat: φ 40um Point: φ 8~10um	
Min. Pitch (um)	60	
C.C.C. (mA)	600	350
BCF (gw/mil)	$0.5 \sim 0.7$	
Max. OD	100	um
Alignment	\pm 0.4 mil	
Planarity	≦1.6 mil	
Tip shape		Point Tip

Impact on Underlying Structure

Impact on Underlying Structure

No physical damage is observed on the underlying structure

Single contact

After multiple contacts

Comparison of Results

- Pre-bump wafer vs bumped wafer
- Functional test 100% correlated
- Leakage, IDD off and Bandgap have comparable distribution

Pre-bump Sorting Challenges

• For example, RDS-on is sensitive to parasitic resistance in the test path.

Benefits

Average product life cycle is 2 years

Conclusion

- Eliminate bump cost for engineering wafers
- Pre-bump testing reduces cycle time and response time to line excursion
- Inter-changeable solution reduce engineering probe hardware costs and lead time
- No physical damage observed on pre-bump pads

Follow-On Work / Q&A

Follow-On work

- Difference between RDL resistance and FLMO trace resistance could cause resistance mis-match
- Plan to re-design and fabricate FMLO to match RDL resistance
- High temperature probe verification

• Questions?

Acknowledgement

GLOBALFOUNDRIES

- Tiong Leh Yap Johnny
- Shaalini Chithambaram
- Jia Wen Ting Terence
- Hui-Shan Chang Joy
- Guo Chang Man
- Alan Lek
- Eddy Lo
- Jeffrey Lam, PhD
- ZhiHong Mai, PhD

MPI CORPERATION

- Jackey Lin
- Joey Wu
- Neo Ou
- Stanley Shiau
- Curtis Hsu

