SW Test Workshop Semiconductor Wafer Test Workshop Managing Challenges Associated with Large Area Array C4 Bump/Cu Pillar SOC Applications using Advanced MEMS Technology Mike Chrastecky – CEO/President BucklingBeam June 5-8, 2016 #### Motivation/Issue - As the market appetite for advanced processing power in automotive, mobile, tablet, flat panel, and video game consoles continues to grow: - Complex wafer testing with higher pin counts, large area array, increased parallelism and smaller form factors are required - Probe cards requiring 20k, 30k, and > probes resulting in high mechanical force, higher frequency of cleaning, higher probe burn incidence, challenges servicing, and reduced probe lifetime are increasing Cost of Test - The market needs a better solution! #### Execution In this paper we will discuss the advantages of a new probe style and housing methodology to meet metrics associated with minimizing COO and maximizing ROI as validated through collaboration with a major FAB/Test House. ### 1st Phase Objective Identify End User Wish List - Low and consistent Cres performance leading to maximum yields - High current probe material that resists probe burning thereby maximizing tester uptime - Extended probe lifetime to maximize the number of dies tested before probe replacement - Easy and safe repair - Means to Lower Cost of Test - Must be a MEMS probe - Ability to control shape/spring rate/material composition (high current) - Mechanical support to allow easy mfg, assembly, and service - Simple and safe probe replacement - Minimal training to perform - Extended probe lifetime - Providing means to Lower Cost of Test! Design modeling suggested adding a Patented 2nd LGP to improve probe position and stability lending to placement accuracy and reduced LGP friction Added a Patented sacrificial 3rd LGP increasing total probe length while maintaining identical probe position and stability. When probe EOL occurs, simply removing the sacrificial 3rd LGP exposes more probe, thus 2X's lifetime! Patented sacrificial 3rd LGP removed exposing 2X's lifetime! # 3nd Phase Objective Manufacture - Technology Name Motus III^R - Latin term meaning 'movement' ### 3nd Phase Objective Manufacture – Motus III R - Patented sacrificial 3rd LGP shown in photo - Simple 4 screw end user removal Video this slide # 4th Phase Objective Bump Deformation by 3rd Party – Motus III ^R < 75% bump damage Pb-Free Solder Bump Probe Marks 5 µm OD Probe Marks 50 µm OD Probe Marks 70 µm OD ## 4th Phase Objective Bump Deformation by 3rd Party – Motus III ^R < 75% bump damage on 40um Cu-Pillar ## 4th Phase Objective Cres Testing by 3rd Party – Motus III ^R ## 4th Phase Objective Cres Testing by 3rd Party – Motus III ^R ## 4th Phase Objective Cres Testing by 3rd Party – Motus III ^R - Cres data test was positive and aligned with a buckling beam Paliney7 Cres, but with much improved probe position, stability and higher lifetime. - Redesign/manufacturing resulted in changing the Probe-to-ST contact, thereby reducing Cres as witnessed on actual production device. However, insufficient time to re-perform test meeting SWTC deadline. ## 5th Phase Objective Easy & Safe Probe Replacement – Motus III ^R - Ability for end-user to service PH maximizes uptime and eliminate or reduces need for backup hardware - Maximum uptime provides Means to Lower Cost of Test Video this slide Video this slide #### Conclusion - Motus III^R addresses the market requirement for: - High mechanical performance reliability - Consistent Cres supporting high yield - Extended lifetime without tradeoffs - Higher current probe that resists burning - Safe and Easy end user repair - Means to Lower Cost of Test #### **Next Steps** - MAC (maximum allowable current) characterization on Motus IIIs to meet new industry standard testing methodology - Motus IIIs Alpha test vehicle being delivered June/July to GlobalFoundries with validation target by end of Q3 - Expect Motus IIIs availability in Q4 in limited quantity with high volume availability starting in in Q1 2017 - Need to identify Alpha 60um test vehicle for Lancaster in Q1 2017 as well as 40um #### **Future Work** | | Available Now | Available Now | Q3 2016 | Q1 2017 | Q3 2017 | |----------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------| | Product/Dev.
Code | Motus II | Motus III | Motus IIIs | Lancaster | Piper | | Technology
Type | MEMS Offset
Probe | MEMS Offset
Probe | MEMS Offset
Probe | Advanced Vertical TBA | Advanced Vertical TBA | | SOC
Application | Al Pad | Micro Bump - CuP | | Market | 1st Gen TSV | SOC | SOC | SOC | SOC | | Pitch ums | 140um + | 100/110 | 80-90 | 60-70 | 40-50 | #### Recognitions - Jens Kober GlobalFoundries, Dresden - Alexander Wittig GlobalFoundries, Dresden - Thomas Auxel GlobalFoundries, Dresden