

SW Test Workshop Semiconductor Wafer Test Workshop

Managing Challenges Associated with Large Area Array C4 Bump/Cu Pillar SOC Applications using Advanced MEMS Technology

Mike Chrastecky – CEO/President BucklingBeam

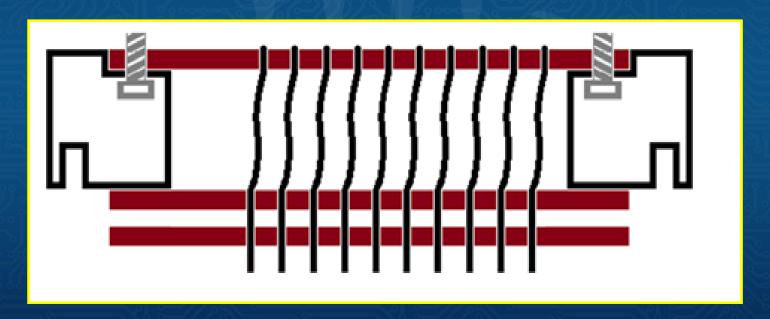
June 5-8, 2016

Motivation/Issue

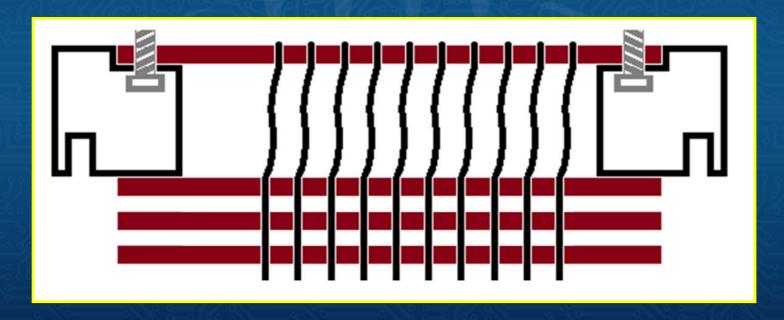
- As the market appetite for advanced processing power in automotive, mobile, tablet, flat panel, and video game consoles continues to grow:
 - Complex wafer testing with higher pin counts, large area array, increased parallelism and smaller form factors are required
 - Probe cards requiring 20k, 30k, and > probes resulting in high mechanical force, higher frequency of cleaning, higher probe burn incidence, challenges servicing, and reduced probe lifetime are increasing Cost of Test
- The market needs a better solution!

Execution

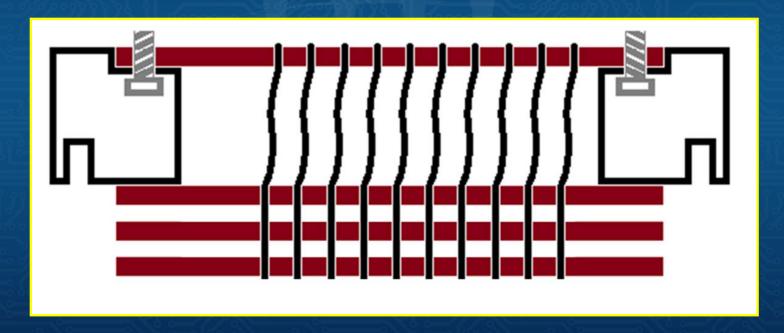
 In this paper we will discuss the advantages of a new probe style and housing methodology to meet metrics associated with minimizing COO and maximizing ROI as validated through collaboration with a major FAB/Test House.

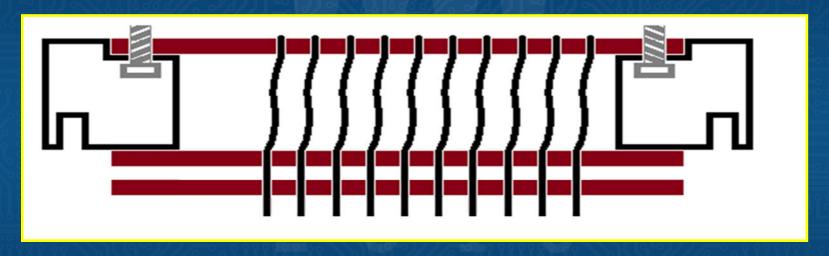


1st Phase Objective Identify End User Wish List

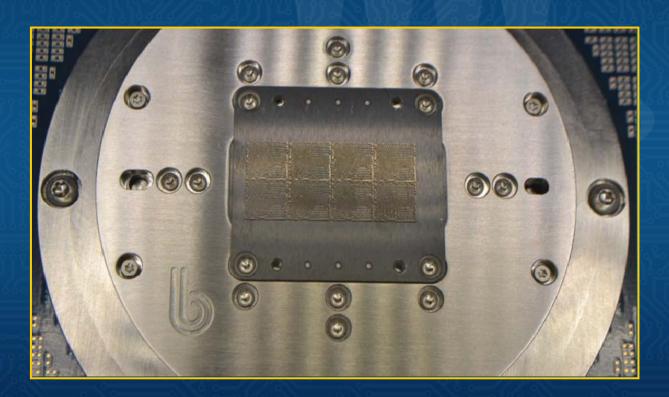

- Low and consistent Cres performance leading to maximum yields
- High current probe material that resists probe burning thereby maximizing tester uptime
- Extended probe lifetime to maximize the number of dies tested before probe replacement
- Easy and safe repair
- Means to Lower Cost of Test

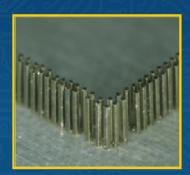
- Must be a MEMS probe
 - Ability to control shape/spring rate/material composition (high current)
- Mechanical support to allow easy mfg, assembly, and service
 - Simple and safe probe replacement
 - Minimal training to perform
- Extended probe lifetime
 - Providing means to Lower Cost of Test!


 Design modeling suggested adding a Patented 2nd
 LGP to improve probe position and stability lending to placement accuracy and reduced LGP friction


 Added a Patented sacrificial 3rd LGP increasing total probe length while maintaining identical probe position and stability.

 When probe EOL occurs, simply removing the sacrificial 3rd LGP exposes more probe, thus 2X's lifetime!

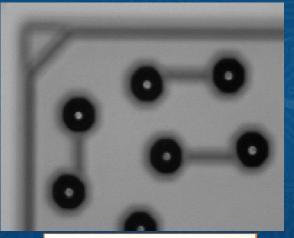

 Patented sacrificial 3rd LGP removed exposing 2X's lifetime!

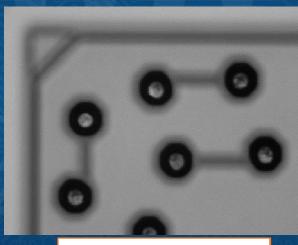


3nd Phase Objective Manufacture

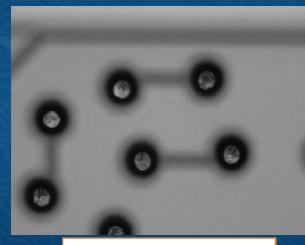
- Technology Name Motus III^R
 - Latin term meaning 'movement'

3nd Phase Objective Manufacture – Motus III R

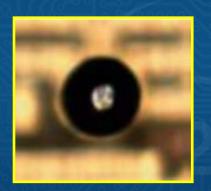

- Patented sacrificial 3rd LGP shown in photo
 - Simple 4 screw end user removal


Video this slide

4th Phase Objective Bump Deformation by 3rd Party – Motus III ^R

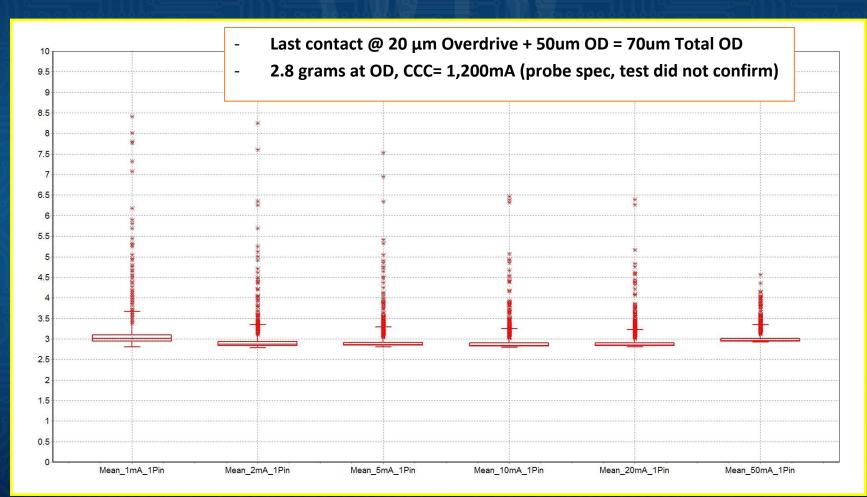

< 75% bump damage Pb-Free Solder Bump

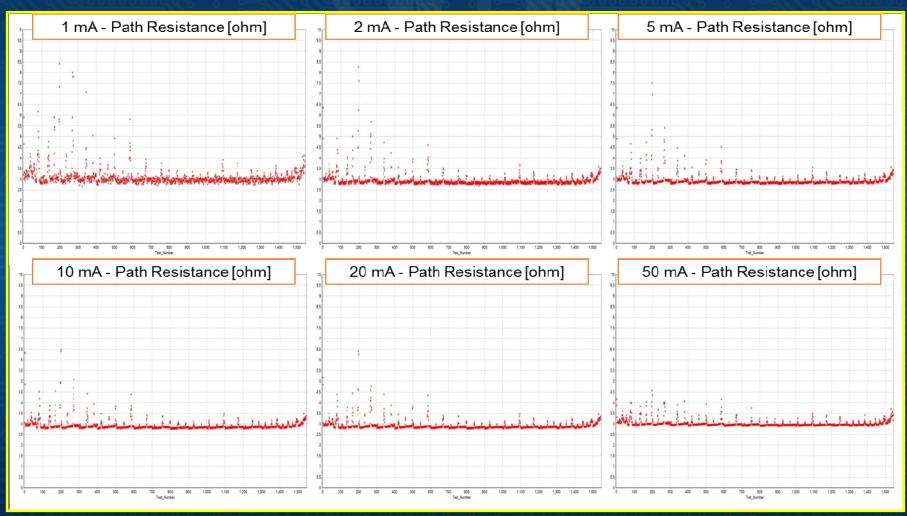
Probe Marks 5 µm OD


Probe Marks 50 µm OD

Probe Marks 70 µm OD

4th Phase Objective Bump Deformation by 3rd Party – Motus III ^R


< 75% bump damage on 40um Cu-Pillar



4th Phase Objective Cres Testing by 3rd Party – Motus III ^R

4th Phase Objective Cres Testing by 3rd Party – Motus III ^R

4th Phase Objective Cres Testing by 3rd Party – Motus III ^R

- Cres data test was positive and aligned with a buckling beam Paliney7 Cres, but with much improved probe position, stability and higher lifetime.
- Redesign/manufacturing resulted in changing the Probe-to-ST contact, thereby reducing Cres as witnessed on actual production device.
 However, insufficient time to re-perform test meeting SWTC deadline.

5th Phase Objective Easy & Safe Probe Replacement – Motus III ^R

- Ability for end-user to service PH maximizes uptime and eliminate or reduces need for backup hardware
- Maximum uptime provides Means to Lower Cost of Test

Video this slide

Video this slide

Conclusion

- Motus III^R addresses the market requirement for:
 - High mechanical performance reliability
 - Consistent Cres supporting high yield
 - Extended lifetime without tradeoffs
 - Higher current probe that resists burning
 - Safe and Easy end user repair
 - Means to Lower Cost of Test

Next Steps

- MAC (maximum allowable current) characterization on Motus IIIs to meet new industry standard testing methodology
- Motus IIIs Alpha test vehicle being delivered June/July to GlobalFoundries with validation target by end of Q3
- Expect Motus IIIs availability in Q4 in limited quantity with high volume availability starting in in Q1 2017
- Need to identify Alpha 60um test vehicle for Lancaster in Q1 2017 as well as 40um

Future Work

	Available Now	Available Now	Q3 2016	Q1 2017	Q3 2017
Product/Dev. Code	Motus II	Motus III	Motus IIIs	Lancaster	Piper
Technology Type	MEMS Offset Probe	MEMS Offset Probe	MEMS Offset Probe	Advanced Vertical TBA	Advanced Vertical TBA
SOC Application	Al Pad	Micro Bump - CuP	Micro Bump - CuP	Micro Bump - CuP	Micro Bump - CuP
Market	1st Gen TSV	SOC	SOC	SOC	SOC
Pitch ums	140um +	100/110	80-90	60-70	40-50

Recognitions

- Jens Kober GlobalFoundries, Dresden
- Alexander Wittig GlobalFoundries, Dresden
- Thomas Auxel GlobalFoundries, Dresden