

SW Test Workshop Semiconductor Wafer Test Workshop

Production Test RF Calibration for Multi-DUT Probe Cards:
How to get the most accurate measurements

Daniel Bock, Ph.D.

Cascade Microtech

June 5-8, 2016

Overview

- What is Calibration?
- What are the differences between single site and multi-site calibration?
- Simulation investigation
- Summary

Why do you need Calibration?

- You want a guarantee that you are measuring your DUT and NOT your test equipment
 - The Probes and cabling introduces errors
 - However, Calibration is able to remove those errors

How does Calibration Work

- It characterizes the RF performance parameters of your test hardware
- Then mathematically remove the parameters

A Little Math....

Two-Port Error Correction

Forward model

E_D = fwd directivity

Es = fwd source match

E_{RT} = fwd reflection tracking

 $E_{D'}$ = rev directivity

 $E_{S'}$ = rev source match

ERT = rev reflection tracking

 E_L = fwd load match

E_{TT} = fwd transmission tracking

 $E_X =$ fwd isolation

E₁ = rev load match

ETT' = rev transmission tracking

Ex' = rev isolation

- Each actual S-parameter is a function of all four measured S-parameters
- Analyzer must make forward and reverse sweep to update any one S-parameter
- Luckily, you don't need to know these equations to use network analyzers!!!

Reverse model

$$S_{11a} = \frac{(\frac{S_{11m} - E_D}{E_{RT}})(1 + \frac{S_{22m} - E_D}{E_{RT}}, E_S') - E_L(\frac{S_{21m} - E_X}{E_{TT}})(\frac{S_{12m} - E_X}{E_{TT}})}{(1 + \frac{S_{11m} - E_D}{E_{RT}}, E_S)(1 + \frac{S_{22m} - E_D}{E_{RT}}, E_S') - E_L, E_L(\frac{S_{21m} - E_X}{E_{TT}})(\frac{S_{12m} - E_X}{E_{TT}})}$$

$$S_{21a} = \frac{(\frac{S_{21m} - E_X}{E_{TT}})(1 + \frac{S_{22m} - E_D}{E_{RT}}, E_S') - E_L, E_L(\frac{S_{21m} - E_X}{E_{TT}})(\frac{S_{12m} - E_X}{E_{TT}})}{(1 + \frac{S_{11m} - E_D}{E_{RT}}, E_S)(1 + \frac{S_{22m} - E_D}{E_{RT}}, E_S') - E_L, E_L(\frac{S_{21m} - E_X}{E_{TT}}, E_{TT})}$$

$$S_{12a} = \frac{(\frac{S_{12m} - E_X'}{E_{TT}'})(1 + \frac{S_{11m} - E_D}{E_{RT}}(E_S - E_L'))}{(1 + \frac{S_{11m} - E_D}{E_{RT}}E_S)(1 + \frac{S_{22m} - E_D'}{E_{RT}'}E_S') - E_L'E_L(\frac{S_{21m} - E_X}{E_{TT}})(\frac{S_{12m} - E_X'}{E_{TT}'})}$$

$$S_{22a} = \frac{(\frac{S_{22m} - E_D}{E_{RT}})(1 + \frac{S_{11m} - E_D}{E_{RT}}E_S) - E_L \cdot (\frac{S_{21m} - E_X}{E_{TT}})(\frac{S_{12m} - E_X}{E_{TT}})}{(1 + \frac{S_{11m} - E_D}{E_{RT}}E_S)(1 + \frac{S_{22m} - E_D}{E_{RT}}E_S)' - E_L \cdot E_L \cdot (\frac{S_{21m} - E_X}{E_{TT}})(\frac{S_{12m} - E_X}{E_{TT}})}$$

Calibration Substrates

- A calibration substrate is used in order to characterize the measurement path
 - Measure some combination of
 - Short
 - Open
 - Load
 - Thru

But what about Multi-DUT?

- In order to improve Cost Of Ownership, many companies are moving to multi-DUT test
 - Increase number of wafers tested per probe card
 - Increase speed of test with lower number of index steps
- But now DUT are being tested with different measurement sites, leading to the requirement for site-to-site correlation

Single Site Cal vs. Multi-site Cal

- Comparing a single site cal and a multi-site cal shows a bifurcation of the S-parameters
- Data indicates that the ISS using a multi-site cal has better correlation between sites on the same probe card measurement

Multi-site Cal

Single Site Cal

What is the difference in a single site layout and multi-site?

Figure showing the state of the adjacent DIE location

Single Site Standards

4-site Standards

Simulation Evaluation

- In order to investigate further, we used simulation to control all other factors
- Simulate two die with same ground return
 - Comparison between two different scenarios
 - Look at error terms when both ports are controlled (multisite cal)
 - Look at the error terms when only one port is controlled, but the other can be a random state (single site cal) which includes short, open, load

Filter measurement data

 The filter is a simple bandpass, with a center frequency of 2.6 GHz, with a 3 dB width of 100 MHz

Cal Coefficients

- In order to properly do SOLT calibration, we need to have cal coeff
- They were extracted using LRRM to calculate the values
 - L-load = 215 pH
 - L-short = 208 pH
 - C-open = 19 fF
 - Thru length = 4.8 ps

Probe Card

 The simulated probe card is modeled after a Pyramid Probe

- 50 mm 0.031" semi-rigid coax

10 mm microstrip transmission line on the Pyramid
 Probe

Membrane Layout

- The design has a two filter layout
 - Each filter has a single input/output pair
 - DUT 1 is port 1, 2
 - DUT 2 is port 3, 4
 - Shared ground return

Simulated performance of a single Channel

- The simulated probe card meets the standard specification of a Pyramid Probe:
 - < 3 dB insertion loss</p>
 - > 10 dB return loss
 - Cross talk is betterthan 55 dB at 2.5 GHz

Measurements before Calibration

- The measurements prior to calibration are identical in each DUT
 - This is ideal scenario

After Calibration Controlled

 Looking at the different between DUT 1 and DUT 2, the variation is in the noise

Δ Return Loss (S11)

Δ Insertion Loss (S21)

After Calibration Uncontrolled

- In the uncontrolled state for the unmeasured lines, it affects both sites, as well as making a bi-modal distribution
 - Compared to DUT 1 from the controlled state

Δ Return Loss (S11)

Δ Insertion Loss (S21)

Which Error Terms are Most Affected?

Which Error Terms are Most Affected?

- ES is most affected (Source match)
- EL is next most (Load match)
- ED is third most (Directivity)
- The rest of the terms are affected less than 5%

Summary

- The most accurate measurement in a multi-site application is to make a calibration substrate that mirrors the multi-site layout
 - Controls all of the RF traces for the highest correlation between sites