

SW Test Workshop Semiconductor Wafer Test Workshop

High and Low Temperature Wafer Probing Challenges

Presenters: Wei Liang Sio

Emanuele Bertarelli

Authors: Yah Ean Koh

Raffaele Vallauri

June 5-8, 2016

Overview

- Motivation
- Probing challenges at high/low temperatures
- Production probing issues with reference probe card
- Prober setup optimization
- Technoprobe solution introduction and results
- Conclusions

Motivation: Automotive Applications

Probing Challenges At High/Low Temperature

- Temperature variation makes everything dynamic, requiring the stabilization of thermal deformation of mechanical setup
 - Thermal contraction and expansion of probes
 - Planarity of prober chuck
 - Optimization of chuck movement
 - Condensation and icing
 - Probe card design and technology

Mechanical Setup Stabilization – Thermal Deformation

- Chuck temperature affects probe card + prober deformation → x,y,z displacement of tips.
- Uneven expansion and contraction causes:
 - Uneven contact between different probes
 - Incorrect overdrive
 - Pad damage
 - OD out of control (z)
 - Incorrect alignment (x,y)

Ref.: S07_02_Bleyl_Martens_SWTW2011

Continuous thermal stress by moving chuck

- Wafer start up
 - Fast heating of PCB
 - Head plate slow temp. change
- Moving chuck
 - Change of thermal gradient in PCB
 - Depends on size and thickness
- Long term status
 - Headplate warms up
 - Continuous change of thermal gradient in PCB

June 12 to 15, 2011

IEEE SW Test Workshop

9

Chuck Flatness Stability Over Time

Condensation

- Environment temperature cause condensation
 - Condensation inside prober and on the probe card
- Preventive Measures
 - 1. Probe card sealing
 - PCB thru hole
 - Probe head
 - 2. Dry air purge of probe card
 - Dry air displaces humidity around the probe card to prevent condensation during low temperature probing

Device Description

• Tester platform is Teradyne J750, Aurora tower

- PCB is directly in contact with the card holder
- External stiffener cannot be implemented

Probe card details

- Pin count: 159
- Pad layout: peripheral, 2 rows
- Array size: 3 mm x 3 mm
- Min pitch: 100 μm
- Min pad opening: 60 x 90 μm
- Pad metallurgy: Al pads

- Issues encountered with existing probe card
 - Frequent floating needle issues observed during extreme high and low temperature testing.
 - Constant probe realignment requirement for high temperature testing.
 - Continuity and yield issues
 - High cost Polisher material to maintain probe's contact resistance during high temperature testing.

- Excessive pin floating: PH mechanical issue
 - Floating issue higher than 150um < happen frequently during high/low temperature testing and exit maximum spec 50um.

Z height variations at high Temperature

Uneven probe height causing prober misalignment is magnified at high temperature

Uneven height still present after probe re-seating

250uM height different

- Missing probe marks
 - Additional probe alignment required every 5mins to avoid probe mark shift

Probe mark with OD 65um

Missing Probe mark

 Observed continuity issue at wafer center from 2nd wafer onwards

Good probemarks

Issue probemarks

Yellow color = continuity failure bin

Soaking Requirement During Probing

Stability during test

- Preheat first die with contact
- Require additional soaking for long pauses
- Realignment after preheat

Probe Mark Profile at 175°C

Yah Ean Koh, Raffaele Vallauri

SW Test Workshop - June 5-8, 2016

Probe Mark Profile at -40°C

Yah Ean Koh,

Raffaele Vallauri

SW Test Workshop - June 5-8, 2016

Test Results

Continuity failure bin

Yah Ean Koh, Raffaele Vallauri

Technoprobe Probe Card Introduction

- Developed a dedicated design, to achieve a weak mechanical interaction between PH mechanics and PCB
- Sealing is applied to isolate prober interior from external environment and prevent condensation during low temperature testing
- PH technology is based on TPEG™ MEMS T1, developed to address probing of Al pads and POAA from -55°C up to + 200°C

TPEG™ MEMS T1 Main Features

PARAMETER	TPEG™ MEMS T1					
Needle diameter	1,5 mils equivalent					
Max pin count	> 20.000 pins					
X, Y alignment accuracy and Z planarity	X,Y: ± 8 μm; Z plan: Δ 20 μm					
Min pitch and configuration	55 μm linear configuration					
Pin Current (CCC)	410 mA					
Force (at 3 mils OT)	3 g					

Buckling Beam Concept

- Technoprobe PH mechanics exploits buckling beam: small force variation (ΔF) vs large OD variation (ΔOD)
- Buckling starts to occur at about 25 μm of actual OD
- Force is almost constant in the working OD range

Yah Ean Koh, Raffaele Vallauri

PH Technology Comparison

 Following table is showing a comparison between Reference Probe card and TP TPEG™ MEMS T1 probing solution

Parameter	Reference probe card	Technoprobe TPEG™ MEMS T1				
Needle diameter	2 mils	1.5 mils equivalent				
Min Pitch Array	75 um	80 um full array (55 μm linear)				
X,Y alignment ±12 um		± 8 um				
Z Planarity 20 um		20 um				
Force (3 mil OD) 4,5cN with 100um OD		3g				
Probe Length 8.5 mm		6.3 mm				

Stabilization at 175 °C

Card preheating at 200 μm over the chuck

Durat	tion(Min)	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56
	Pin 1	73321	73314	73269	73264	73249	73254	73249	73249	73249	73239	73244	73244	73244	73244	73244
Reference	Pin 2	73330	73322	73286	73276	73266	73266	73261	73261	73261	73256	73256	73256	73256	73256	73256
Pins (um)	Pin 3	73332	73320	73286	73276	73266	73261	73261	73261	73261	73266	73251	73256	73256	73256	73256
	Pin 4	73329	73322	73287	73282	73277	73272	73272	73267	73267	73267	73262	73267	73267	73267	73267

Stabilization at -40 °C

Card precooling at 200 μm over the chuck

Di	uration (min)	0	5	10	15	20	25	30	35	40	45	50
(mm)	Pin 1	73637	73666	73673	73676	73677	73678	73678	73678	73678	73678	73678
	Pin 2	73642	73665	73668	73669	73672	73671	73672	73672	73671	73671	73671
Refer	Pin 3	73640	73663	73667	73668	73668	73670	73670	73671	73670	73670	73670
严절	Pin 4	73635	73660	73663	73664	73662	73662	73662	73660	73662	73662	73662

Benchmark Summary

 Following table is showing the prober and cleaning setup comparing today reference probe card with respect to Technoprobe probing solution

Category	Reference Probe card	Technoprobe			
Prober Type	TEL P12	TEL P12			
Probing OD	70~80 um (max125um)	50 um (max 100 um)			
Soaking Time, if any	2 hours	2 hours			
Preheat Setting, if any	30 mins	45 mins - HT 25 mins - cold			
Cleaning settings:					
Cleaning Media	ITS PP99	Mipox WA6000			
Cleaning OD	70~80 um	50 um			
Cleaning Frequency	20 index	100 index			
Auto Alignment, if any	Every 5 mins	None			

Conclusions

Solutions to extreme temperature probing:

- Fine tuning soaking recipe
- Optimize probing sequence
- Avoiding condensation
- Additional soaking requirements
- Technoprobe probe card design and probe technology demonstrated to be a production worthy solution

Acknowledgements

GLOBALFOUNDRIES

- Shi Binglin
- Joy Chang Hui Shan
- Xing Yao
- Jeffrey Lam
- Man Guo Chang
- Eddy Lo

TECHNOPROBE

- Raffaele Vallauri
- Emanuele Bertarelli
- Hellen Kee

