

SW Test Workshop Semiconductor Wafer Test Workshop

A new approach to low pin count products test found Vertical Probes for to be superior to Cantilever

Franz Steger (TI)
Alessandro Antonioli (TP)
Raffaele Vallauri (TP)

June 5-8, 2016

Overview

- Introduction
- Methods and Materials
- Results / Fields of comparison
- Summary / Conclusion

Introduction

- Texas Instruments
- FTest = Freising Test (Freising, Germany)

Product portfolio:

- High performance analog
- Linear & Logic
- Power management
- •

*ADVANCES IN ELECTRONIC TESTING:

CHALLENGES AND METHODOLOGIES, DIMITRIS GIZOPOULOS

3

FTest products

Methods and Materials

- Introduction
- Methods and Materials
 - Test candidates
 - Probe solution
 - Technoprobe T1 needle
 - Technoprobe XLT option
 - ROI estimation
- Results
- Summary / Conclusion

Methods and Materials

Test candidates

	Single site	Quad site	16 site
Product	Op-Amp	Mobile Application	Little logic
Needles	61	96	80
Tester	ETS-364 (Eagle / Teradyne)	VLCT (Texas Instruments)	ETS-88 (Eagle / Teradyne)
Max. Curr.	50mA	10mA	50mA
Max. Frequ.	n.a.	3MHz	1GHz
Max. test temperature	125C	25C	85C

Methods and Materials

- Cantilever probe
 Tungsten Rhenium
- FR4 probe card
- Stiffener
 (as requ. by vendor)
- Allied Diamond Lapping (50-30145 3um, PinkPad)

- Technoprobe T1
 with XLT option
- FR4 probe card
- Stiffener (as requ. by vendor)
- MIPOX WA6000 SWE

Method and Materials

Technoprobe TPEG™ MEMS T1 needle technology:

- Fine pitch down to 55um
- Low force for Al Pad probing and PoAA
- Main characteristics:

PARAMETER	TPEG™ MEMS T1	
Needle diameter	Less than 1,5 mils equivalent	
Max pin count	> 20.000 pins	
X, Y alignment accuracy and Z planarity	X,Y: ± 8 μm; Z plan: Δ 20 μm	
Min pitch and configuration	55 μm linear configuration	
Pin Current (CCC)	410 mA	
Force (at 3 mils OT)	2 g or 3 g	

Method and Materials

Technoprobe XLT option

- Patented solution by Technoprobe
- XLT option offers a longer usable tip while maintaining the advantages of the already proven TPEG™ MEMS T1 characteristics
 - Low and constant force
 - Effective cleaning recipe for stable CRES
 - No scrub probe marks

ROI estimation (4M+TD)

- Cantilever
 - Initial cost X\$
 - Renew Y\$
 - Online cleaning Z\$
 - Offline maintenance 1.5h
- → Running cost K\$

- TPEG™ MEMS T1 XLT
 - Initial cost 8*X\$
 - Renew Y\$*2
 - Online cleaning 0.67*Z\$
 - Offline maintenance 0.3h
- → Running Cost ~0,1*K\$

 TPEG™ MEMS T1 XLT Probe Card breakeaven cost vs cantilever at 2.000.000 touchdowns

- Introduction
- Methods and Materials
- Results / Fields of comparison:
 - Probe marks
 - Contact resistance
 - Operating performance
 - Throughput
 - Cost of ownership
- Summary / Conclusion

Probe Marks Analysis

- TPEG™ MEMS T1 XLT
 technology outperforms
 cantilever in respect of probe
 marks and pad damage:
 - No punch through and no cracks below bond pad found.
 - 15 test runs on all test canditates

Contact resistance (vertical only)

Cleaning recipe

- Over travel (test): 80 um (first touch)
- Online cleaning media: MIPOX WA6000 SWE
- Cleaning freq.: 35 touchdowns
- Strokes: 1 @RT, 2@ HT
- Over travel (clean): 85 um

Offline Mantenance

- Every 500.000 Touchdowns
 - Visual inspection (incl. free length measurement)
 - Particle removal (pressurized air, IPA, brush) if required.
- \rightarrow Contact resistance: Average 1.2 Ω , std. dev. 0.06 Ω (over 250k TDs)

- Contact resistance distributions
 - TPEG™ T1 XLT has much narrower distribution vs Cantilever enabling better control over time.

Operating performance

Number of unplanned interruptions per card under test

Impact on throughput

Average troughput per tester

ROI estimation (4M+TD)

- Cantilever
 - Initial cost X\$
 - Renew Y\$
 - Online cleaning Z\$
 - Offline maintenance 1.5h
- → Running cost K\$

- TPEG™ MEMS T1 XLT
 - Initial cost 8*X\$
 - Renew Y*0.16\$
 - Online cleaning 0.67*Z\$
 - Offline maintenance 0.3h
- → Running Cost ~0,1*K\$

 TPEG™ MEMS T1 XLT Probe Card breakeaven cost vs cantilever at 2.000.000 touchdowns

Financial Impact

Conditions for calculation

- Cantilever cards already in house (no new acquisition, only rebuilt / refurbish at EOL)
- PCB is re-used for vertical

Summary

Conclusion:

- High performance probe solutions are cost effective also for low pin count probe card applications
- This study has demonstrated the advantage of using vertical technology (Technoprobe T1 XLT) also for low pin count probe cards:
 - No pad damage
 - Stable contact resistance with better distribution
 - Higher life time with less maintenance effort
 - Higher initial cost but overall lower cost over lifetime → Better ROI

Acknowledgement

Texas Instruments

- Dirk Jasmer, Maciej Miler (Product responsible)
- Al Wegleitner (& PTS team)
- Werner Huber (& FTest management team)

Technoprobe

- Detlev Koch (Teltec)
- Alessandro Antonioli
- Raffaele Vallauri

Thank you for your attention

Backup

TPEG T1 (standard vertical probe)

TPEG T1
XLT Option

probe card

probe card

