

Forget the Paschen and Embrace Turbulence!

Authors: Bryan Root¹, Alex Pronin², Bill Funk¹, Seng Yang¹, Adam Schultz¹

KEITHLEY

A Tektronix Company

¹ Celadon ² Keithley

HIGH PERFORMANCE PROBE CARDS

Outline

- Introduction to High Voltage and its' applications
- What's the problem?
 - Damaging devices during high voltage testing
- Models
 - Should we be so "Paschen-ite?"
 - Streamers or Townsend?
- Reality show me the data!
 - Let's try and keep it simple
- Revised models
 - Weakest link distribution
- Conclusion and Future Work

Introduction

High power and high voltage devices are growing in volume significantly. Voltages are getting higher and higher.

Power switching applications are a common presence in our daily-life.

- Down Hole Oil Drilling, Geothermal Instrumentation ____
- Switched-Mode Power Supply (SMPS)
- Electric Vehicles (EV)
- Power Factor Correction (PFC)
- Uninterruptible Power Supply (UPS)
- Solar Inverters
- Induction Heating
- Motor Drives

The PowerDrive ICE ultraHT RSS operates durably at 200 degC [392 degF], bringing the benefit of a fully rotating RSS to HT and ultraHT reservoirs. Visit PowerDrive ICE ultraHT RSS page

Applications for High Voltage transistors

Silicon which is the most mature technology is pushing its theoretical limits.

We are seeing SiC and GaN in more power switching applications.

So, what is the problem with high voltage devices?

How do we test these devices without:

Degrading (or destroying) the devices
Degrading (or destroying) the probe card
Degrading (or destroying) the prober or test system

We must understand the physics
The biggest issue – no walking wounded

Device types Planar and Vertical devices

Testing High Voltage devices.....

....Can be a challange

Video

Soft Fails followed by hard breakdown

150um Pitch on Wafer (Breakdown Occurs at the End of Each Data Set) 6.00E-07 5.00E-07 Test Conditions: Vramp, 5V steps at 200msec to 3000 volts 4.00E-07 Æ t 3.00E-07 Soft Fail 1 - Soft Fail 3 2.00E-07 1.00E-07 0.00E+00 100 200 300 600 700 800 Voltage (V)

 Current is preferentially flowing along the surface of the device.
 Soft fails are extrinsic "defects." They are current streamers forming that heal themselves.

During a hard breakdown surface arcing occurs. The discharge follows a filamentary and irregular pattern as opposed to the Townsend effect in an ideal gas.

Paschen's incorrectly estimates the breakdown voltage especially at geometries typical in semiconductor devices

What about Paschen's Law?

How can two flat plates in a bell jar with a controlled gas relate to.....

.....two probes on the surface of a semiconductor device in a non-ideal environment?

How about here?

Planar device

 C_1 = Drain to Source Capacitance ρ_B = Bulk Resistivity ρ_{in} = Intrinsic Surface Resistivity ρ_{ex} = Extrinsic Surface Resistivity

R_{cs} = Source contact resistance R_{cd} = Drain contact resistance

Similar to Fast tests for Device Reliability

TDDB, Electromigration

- V ramp
- I ramp
- Isothermal
- Constant Current
- Constant Voltage

Thousands of probes sacrificed themselves for this research project

1. Probes on the wafer

- 1. Normal ambient 14.7 PSI
- 2. Air jet (14.7PSI)
- 3. Air pressure 14.7PSI + 20PSI
- 4. In Fluorinert
- 2. Probes off the wafer 250um
 - 1. Ambient
 - 2. Air
 - 3. In Fluorinert

Test Apparatus

Keithley 2657A

- 5 volt steps every 200msec
- 0 to 3000 volts or until breakdown
- Manual Prober
 - Hot chuck

Custom Celadon Ceramic probe card

- 60 probes (30 pair)
- Cleanroom
 - RH: 30% 40%
 - CDA

Current vs Time Soft Fails

Ambient air

Air Jet (CDA)

20 PSI, no air flow

Author

Current vs Time Soft Fails

Ambient air

Lower ρ_{ex}

Current vs Time Soft Fails

Air Jet (CDA)

20 PSI, no air flow

Weibull Distribution of Air Jet Fails

- Single distribution for soft fails
- Intrinsic

 Single distribution for hard fails
 Intrinsic

Weibull Distribution of high pressure fails

 Two separate distributions for soft fails
 Intrinsic and extrinsic

- Two separate distributions for hard fails
- Intrinsic and extrinsic

Soft Fails are a key parameter

A device that has experienced a soft fail during test is damaged and thus has a higher probability of early failure under normal use.

How to predict soft fails? =>> Highly influenced by extrinsic defects How to suppress soft fails?

Don't forget about the crud on the device

The breakdown voltage is dominated by the material with the lowest dielectric strength and the statistical probability of high field strength point defectsand crud on the surface of the device

Krile, et al observed that

- Breakdown occurred on the surface in air
- Breakdown occurred over the surface in N2
- Breakdown voltage was lower with higher humidity
- Observed Soft breakdown

Pictures of test stopped at soft fail/hard fail

Soft Fail

Hard Fail

Pictures of test stopped at soft fail/hard fail Soft Fail Hard Fail

Prior research supports soft breakdown model

At 10V or at 5000V Soft Fails can damage the device

Direct Jet[™]

• VersaCore[™]

- Direct Jet[™]
- Pressure bubble
- Turbulent flow
- Minimal gap to enhance pressure bubble
- Prevent beam arcing to the wafer
 =>Patented AttoFast[™] probes car touch at 3000V without shorting.

• Software control

- Heat
- Air on/off pressure

What about contact resistance?

- A-spot model?
- Extreme heat and thermal runaway
- Similar to highly accelerated Electromigration
 - Critical Current Density in A/cm²
 - 1 x 10⁵ A/cm² normal current density (years)
 - 1 x 10⁶ to 2 x 10⁶ A/cm² Accelerated current conditions (weeks to months)
 - 1 x 10⁷ to 2 x 10⁷ A/cm² Highly accelerated conditions (seconds)

Critical Current density

Critical Current Density in A/cm²

- $-1 \times 10^{5} \text{ A/cm}^{2} => 1 \text{ mA/um}^{2} \text{ Okay}$
- $-1 \times 10^{6} \text{ A/cm}^{2} => 10 \text{ mA/um}^{2} \text{ Accelerated}$
- $-1 \times 10^7 \text{ A/cm}^2 => 100 \text{ mA/um}^2$ Highly accelerated

Conclusions

- Embrace Passion and forget about Paschen and Townsend
- Voltage breakdown follows a defect dominated failure distribution
 - Extrinsic defects
 - Related to contamination
 - Weakest link
 - High field strength defects
 - Intrinsic failures
 - Design related

Surface moisture and contamination heavily influence fails

Future Work

Special Silicon Wafer -Pad shape – Pad distance -Single crystal silicon -Field oxide -Passivation

Acknowledgements

• The authors would like to thank

- Keithley Instruments
 - Ed Woszkowski, Matt Holtz, Joe Peters
- Celadon Systems
 - Joan Hennes, Victor Tran, Garrett Tranquillo, Karen Armendariz
- Nicolo Ronchi, IMEC
- Dr. Steve Campbell, U of M Nanoscience Center
- Dr. Joe McPherson, J. W. McPherson Reliability Consulting
- Dr. John Suehle, NIST (ret.)

References

- Ghetti et al., "Gate Oxide Reliability: Physical and Computional Models," Predictive Simulation of Semiconductor Processing, pp. 201-258, 2004.
- Krile, et al., "DC and Pulsed Dielectric Surface Flashover at Atmospheric Pressure," *IEEE Transactions on Plasma Science*, Vol. 33, No. 4, 8/2005.
- Peterkin et al., "Surface Flashover of Silicon," IEEE Transactions on Electron Devices, Vol. 37, No. 12, 12/1990.
- Gradinaru and Sudarshan, "Bulk Breakdown of High Field Silicon-Dielectric Systems," IEEE Transactions on Electron Devices, Vol. 37, No. 12, 12/1990.
- Naidu and Kamaraju, "High Voltage Engineering," 5th Edition, McGraw Hill, 2013.
- J. W. McPherson, "Reliability Physics and Engineering," 2nd Edition, Springer, 2013.
- Hourdakis, et al., "Submicron Gap Capacitor for measurement of Breakdown Voltage in Air," Review of Scientific Instruments, 2006.