

RF Broadband Matching for 5G Probe Card without Using VNA

Lisy , Chunghwa Precision Test Tech. Co., Ltd. Norman Hsu, Chunghwa Precision Test Tech. Co., Ltd. Wasen Wang, Chunghwa Precision Test Tech. Co., Ltd. Chimin Yang, Chunghwa Precision Test Tech. Co., Ltd.

RF Broadband Matching for 5G Probe Card without Using VNA

- RF Matching Difficulty Comparison between FT and CP
- How to Find Out the Matching Solution by Using Smith Chart
- Bandwidth Comparison between T3 and T5 Matching Circuit
- Verification Case on T5 and T3
- Conclusion

• RF Matching Difficulty Comparison between FT and CP

n77

Band +	Duplex mode ^[A 1] \$	f (MHz) ≑	Common name 🔶	Subset of band +	Uplink ^[A 2] (MHz) ▼	Downlink ^[A 3] (MHz) ♦	Duplex spacing (MHz) \$	Channel bandwidths ^[5] (MHz)
n79	TDD	4700	C-Band		440	0 – 5000	N/A	40, 50, 60, 80, 100
n78	TDD	3500	S-Band	n77	330	0 – 3800	N/A	10, 20, 40, 50, 60, 80, 100

TDD	3700	S-Band	3300 – 4200	N/A	10, 20, 40, 50, 60, 80, 100	

For 5G sub-6GHz application, its bandwidth should be over 900MHz, so the wideband matching is imperative for L/B.

Wider bandwidth for 5G is needed.

4	GUTE

Rand A	Duplex	f .	Common	Subset of band	Uplink	Downlink	Duplex spacing	Channel bandwidths
Banu y	mode ^[A 1] *	(MHz)	name	Subset of ballor \$	(MHz)	(MHz)	(MHz)	(MHz)
47	TDD	5900	U-NII-4 ^[A 16]		5855 -	- 5925	N/A	10, 20
46	TDD	5200	U-NII ^[A 15]		5150 -	- 5925	N/A	10, 20
43	TDD	3700	C-Band		3600 -	- 3800	N/A	5, 10, 15, 20
48	TDD	3500	CBRS (US)		3550 -	- 3700	N/A	5, 10, 15, 20
49	TDD	3500	C-Band	48	3550 -	- 3700	N/A	10, 20
22	FDD	3500	C-Band		3410 – 3490	3510 - 3590	100	5, 10, 15, 20
42	TDD	3500	CBRS (EU, Japan)		3400 -	- 3600	N/A	5, 10, 15, 20
52	TDD	3300	C-Band		3300 -	- 3400	N/A	5, 10, 15, 20
38	TDD	2600	IMT-E ^[A 14]	41	2570 -	- 2620	N/A	5, 10, 15, 20
7	FDD	2600	IMT-E		2500 – 2570	2620 - 2690	120	5, 10, 15, 20
41	TDD	2500	BRS	7	2496 -	- 2690	N/A	5, 10, 15, 20
53	TDD	2400	S-Band		2483.5	- 2495	N/A	1.4, 3, 5, 10
				-				

4G LTE bandwidth is less than 5G.

RF Matching on <u>CP</u>:

• No room inside the probers to let engineers hook instrument cable up to Probe Card closely.

RF Matching on <u>FT</u>:

• Engineers can rely on VNA and move it closer to ATE for RF Matching.

For CP RF Matching:

- Engineers can only measure the power(dBm) from ATE program, and couldn't further to use instrument.
- It will let RF matching become difficult when signal path contains many impedance discontinuity interfaces, Normally, engineers can only do Try-and-Error tuning on the space transformer of the probe card.

SWTest Conference 2019, June 2 to 5, 2019

- RF Matching Difficulty Comparison between FT and CP For CP RF Matching:
 - It will take 1 hour or a little bit longer when soldering one component from the space transformer of the probe card and then re-docking probe card onto the prober roughly.
 - Engineers probably force the component pads to peel off from the PCB after multiple soldering.

How to Find Out the Matching Solution by Using Smith Chart

We can closely estimate the input impedance of the DUT after soldering series components R, L, and C sequentially on the matching network and getting three separate power levels from the TX power or RX strength of ATE datalog.

Bandwidth Comparison Between T5 and T3 Matching Circuit

T5 RF matching network is much preferred because its wider bandwidth matching can conquer some uncertain factors than T3.

Such as:

- 1. wider bandwidth
- 2. better linearity
- 3. wider testing temperature range
- 4. more tolerance is allowable of overused solder on the component pad

5. more L, C variation is allowable for multi-site projects

1. wider bandwidth

S11	BW, S11<-10dB
T5	2.07GHz
Т3	0.85GHz

SWTest Conference 2019, June 2 to 5, 2019

- Bandwidth Comparison between T3 and T5 Matching Circuit
 - 2. better linearity

S21	BW, ∆S21<-1dB, Fc=3.75GHz
T5	2.42GHz
Т3	1.09GHz

3. wider testing temperature range

S11	25°C	100°C	Difference
T5	2.07GHz	1.93GHz	6.76%
T3	0.85GHz	0.772GHz	9.17%

4. more tolerance is allowable of overused solder on the component pad

S11	Origin	Overuse Solder	Difference
T5	2.07GHz	2.05GHz	2.38%
Т3	0.85GHz	0.74GHz	12.9%

5. more L, C variation allowable on multi-site projects

S11	Origin	Component Variation (Value - 10%)	Differenc e
T5	2.07GHz	1.93GHz	6.76%
T3	0.85GHz	0.75GHz	11.76%

• Verification Case on T5 and T3

3 Advantages:

1. Easy to match to 50ohm (Shorter time for matching)

2. Cover the variation of component value variation (Stable for Multi-site)

3. Better S11 with flatter S21 for the whole channel. (Channel flatness)

Conclusion

◆ For CP testing, engineers usually do Try-and-Error tuning on the space transformer of the probe card and peel off the component pad from the PCB through multiple soldering.

◆ CHPT RF Matching Tool can come up with the best T5 or T3 RF matching component after series R, L, C respectively and measure the power(dBm) from ATE program.

- ◆ 5 advantages of T5 Circuit than T3:
- 1. Wider Bandwidth(shorter time for matching).
- 2. Better insertion loss linearity.(better channel flatness)
- 3. Wider testing temperature range.
- 4. More tolerance is allowable of overused solder on the component pad.
- 5. More L, C variation is allowable on multi-site projects.(multi-site is stable).
- According to the verification results from customers, the bandwidth of T5 matching circuit is wider than T3.

SWTest Conference 2019, June 2 to 5, 2019