

Reducing Test Costs by Optimizing the Prober Indexing Process

Author/presenter: Ken Walker, Intel Corp.

Contributor: Balbir Singh, Intel Corp.

Reducing Test Costs by Optimizing the Prober Indexing Process

Outline

- Objectives
- Introduction
- Equipment & Procedures
- Results
- Conclusions
- To-do List

Objectives

 Develop means to quickly alter prober "recipes" (Before probe card design)

Quantify & correlate variables affecting index times ->
 PREDICTABILITY

• Trim index times & costs

Introduction: prober indexing process

Suspected Variables affecting index time

- Prober X/Y/Z drive H/W & S/W
- Die size & aspect ratio
- Index pattern:
 - X-priority
 - Y-priority

Author

Diagonal, vortex, etc.

Parallelism: # of sites, configuration, indexing choices

Equipment & Procedures

- 2 probers (300-mm)
- S/W: index instructions ("maps")
- Maps → prober "recipe" file
- Start timer 1st die; end last die
 NOT included:
 - test program
 - loading/unloading wafer
 - wafer/probe alignment (demo mode); no:
 - theta rotation of chuck
 - slight stepping in "off" axis

Fable? The Tester and the Die

Mostly X1

Some X4

Experiment #1: X vs. Y Indexing

X indexing: hundreds of X steps; few Y

Y indexing: hundreds of Y steps; few X

X vs. Y indexing times (square die)

Experiment #2: Die Aspect Ratio (W/L)

Which indexes faster? By how much? Why? Predictably?

SWTest | June 2-5,2019

Varying aspect ratios (X indexing)

Aspect ratios (Y indexing)

SWTest | June 2-5,2019

Index time/wafer, sec

Smaller aspect ratios (W/L) → faster X indexing

Larger aspect ratios → faster Y indexing

WHY??

Indexing Distance (H/W travel)

Index distance/wafer, m

Predictability

Predictability: trivia for your next social event

If we invert aspect ratio (AR),

- 2:1 to 1:2 AR, index distance drops ~2:1 (X indexing)
- $-3:1 \rightarrow 1:3$, distance drops ~3:1
- $-4:1 \rightarrow 1:4, ~4:1$

AND... index distance → linear w/ index time – about 1:8.5

Drop distance 1 m → ~8.5 sec

Conclusions, Experiment #2

Since this:

indexes faster than:

er than:

...design probe card & lay out (or rotate) wafer...

...to index like this

SWTest | June 2-5,2019

Can't rotate wafer & probe card...?

Die aspect (W/L)	Test this way:
< 2	Xindexing
~2	X or Y (or Vortex) indexing
> 2	Yindexing

Conclusions, Exp #2

...design die to be less square?

SWTest | June 2-5, 2019

Experiment #3: Z up/down travel

500 um up/down...
...or 250?

SWTest | June 2-5, 2019

Index time by Z up/dn, X indexing

Experiment #4: Multi site (24 mm² die)

Bottom Line (X1 only)

Fastest indexing pattern	0.035 sec/die
Rotate wafer/card, Design die less square	0.040 sec/die
250 um Z up/dn	0.035 sec /die
TOTAL	0.11 sec/die

Run rate: 10MU/yr...

Test cost: \$100-200/hr

Savings: \$40K/yr

To do...

More work: X2 & X4

Design/Architecture → make die less square?

Test facilities → follow our index maps

Wafer/shuttle layout → short die side perpendicular to notch

 Θ rotation & off-axis micro-stepping? (Work w/ probe card vendors to align more to prober axes?)

Thank you

