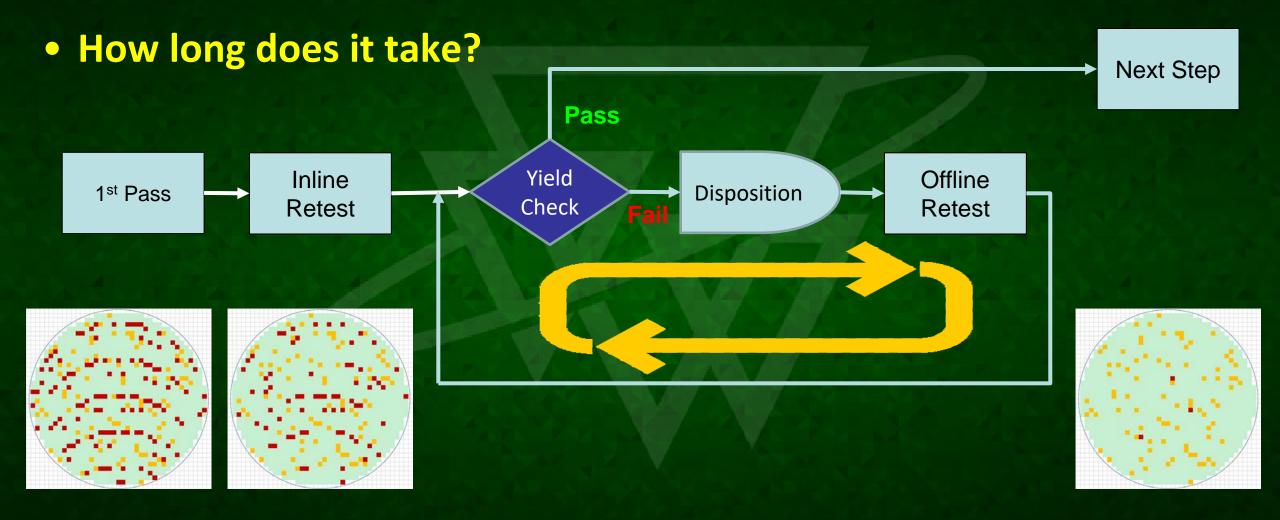


Intelligent Method for Retesting a Wafer

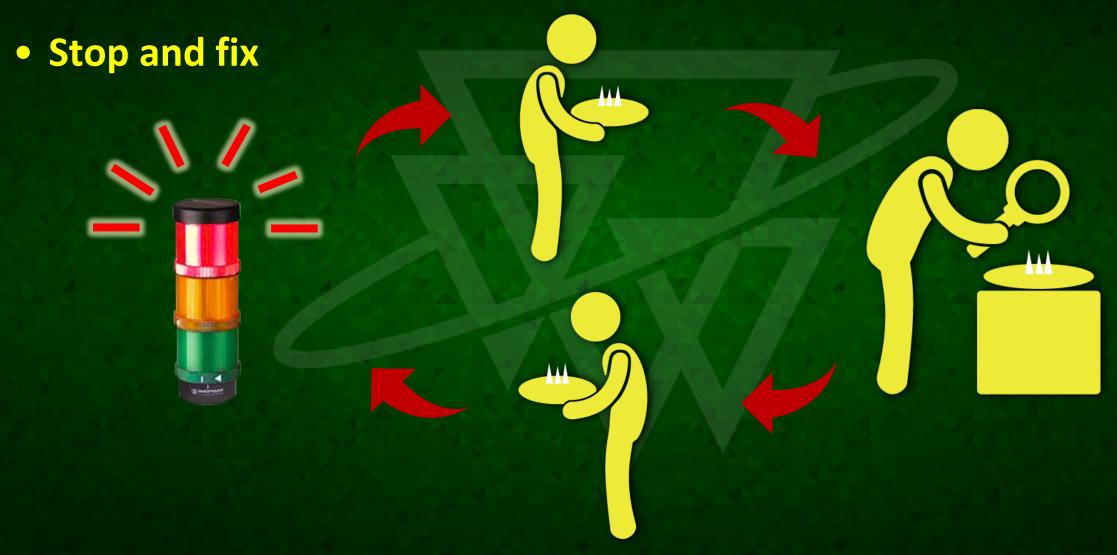
Achieve Test Excellence


Pai Chang / YK Huang Teslence Technology Co., Ltd

June 2-5,2019

- Probe Production Issues
- Concept of an intelligent retest
- Methodology
- Result analysis
- Other capability
- Summary

Probe Production Flow


What happened?

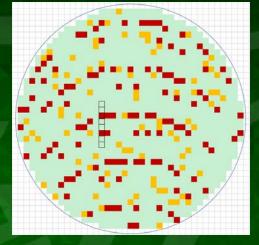
• Low site to site yield from first pass to inline retest

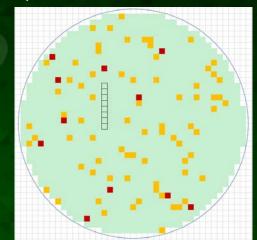
Site	FirstPass	Inline Retest
All	82.63%	87.60%
0	91.93%	91.93%
1	92.45%	92.45%
2	37.25%	62.75%
3	96.03%	96.03%
4	89.66%	89.66%
5	72.41%	85.52%
6	92.19%	92.19%
7	91.34%	91.34%

- Probe head?
- Tester?
- Prober?
- Program?
- Probe Card?
- **PIB**?
- Docking?
- Alignment?

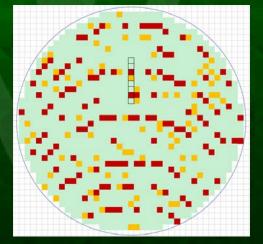
Now What?

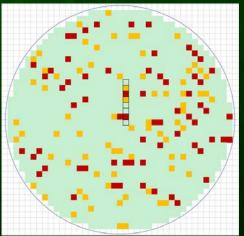
Or another way...

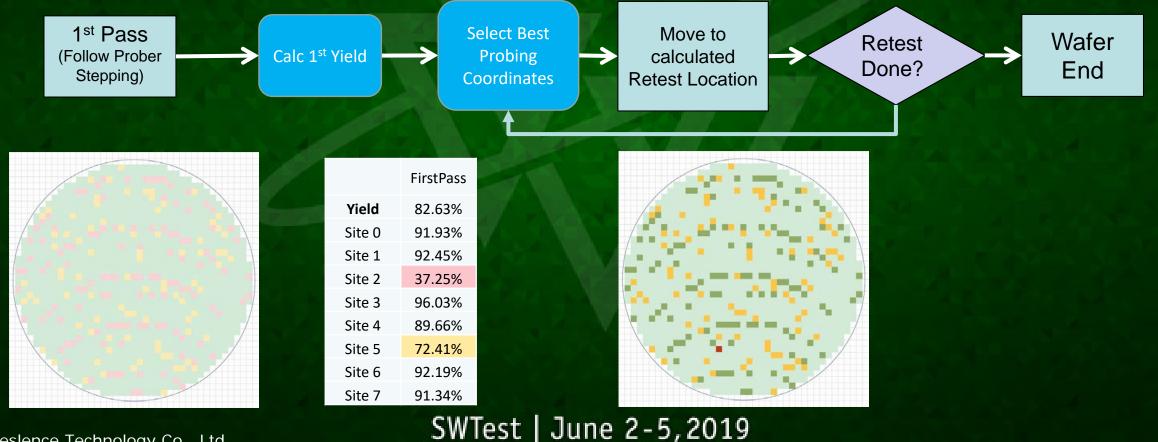

• Blind shift site reprobe on prober


- Pre-defined 2nd step map
- Fixed shift site location

• Cons:


- Need to setup for each device
- Wafer stepping optimization lost
- Performance may differ base on low yield site locations


Non-overlapping: Low Yield S2 & S5, retested with S6 & S0


Overlapping: Low Yield S2 & S6, retested with S6 & S2

Intelligent Reprobe

- We called **xREPROBE**, use best yielding sites
- **Patented : TW I639846 ; Pending in US and others** \bigcirc

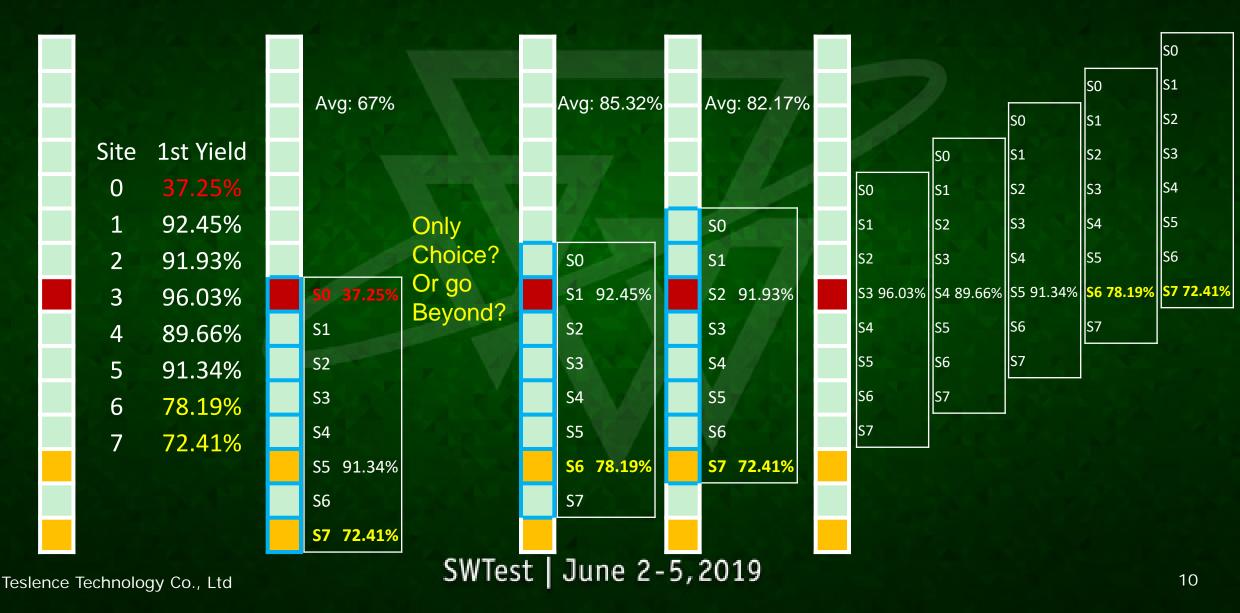
Teslence Technology Co., Ltd

Methodology

1st step: Optimize for retest time

- Find location to test as many as rejects as possible
- Among the possible shifts, pick the best sites to retest

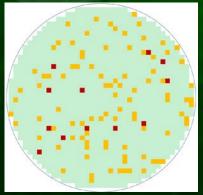
2nd step: Optimize for retest yield


- If chances to recover are low, look for other shift testing fewer rejects
- Rules include:
 - Possible recovery yield control
 - Retested with bad site

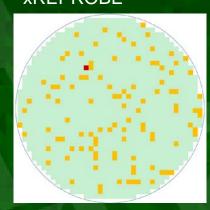
How Do We Decide? - Optimize Retest Time

• Options we have for retest on example (1x8 PH), to test all rejects

How Do We Decide? - Optimize Retest Yield



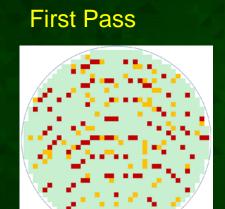
Result Comparison – Low Yield on none overlap sites

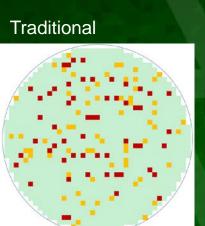


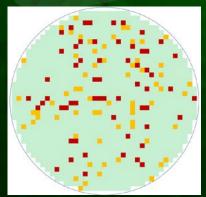
Blind Shift

Retest Options

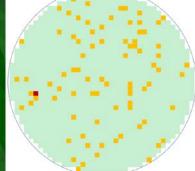
xREPROBE vs Traditional:


	FirstDocs	Retest Options				
	FirstPass	Traditional	Blind Shift	xREPROBE		
Yield	78.36%	84.77%	90.93%	90.85%		
0	92.55%	12 ①	16	59		
1	93.08%	11	62	80		
2	26.80%	112	12	0		
3	92.05%	12	16	47		
4	88.97%	16	12	19		
5	57.24%	62	11	3		
6	90.63%	12	112	29		
7	87.40%	16	12	16		
TD	161	1412	160	128		
RedCnt	147	85	12	1		
RedPct	12.57%	7.27%	1.03%	0.09%		


Number represents number of rejects tested
 Number represents number of touch downs


Result Comparison – Low Yield on overlap sites

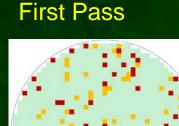
Retest Options



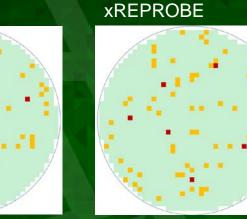
Blind Shift

xREPROBE

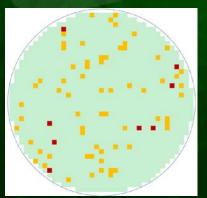
xREPROBE vs Traditional:



	FirstDass	Retest Options				
	FirstPass	Traditional	Blind Shift	xREPROBE		
Yield	84.26%	89.39%	89.39%	92.99%		
0	91.30%	14①	7	14		
1	96.23%	6	8	83		
2	53.59%	71	61	3		
3	94.04%	9	8	11		
4	95.17%	7	14	12		
5	94.48%	8	6	38		
6	52.34%	61	71	2		
7	93.70%	8	9	21		
TD	161	112②	121	99		
RedCnt	102	57	59	1		
RedPct	8.73%	4.88%	5.05%	0.09%		


Number represents number of rejects tested
 Number represents number of touch downs

Result Comparison – Normal Yield Across Sites

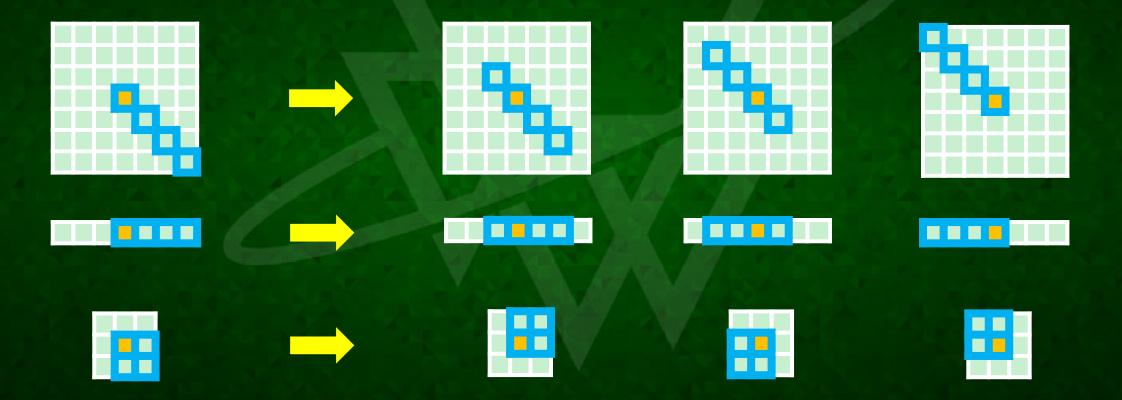


Blind Shift

Traditional

Retest Options FirstPass Traditional Blind Shift **xREPROBE** 89.91% 93.67% 93.76% Yield 93.76% 88.20% 19 18 0 3 86.16% 1 22 15 4 2 89.54% 16 14 10 95.36% 56 3 7 7 87.59% 18 19 4 2 89.66% 15 22 8 5 89.06% 16 6 14 12 94.49% 7 23 7 7 TD 78 87 161 69 47 RedCnt 8 7 5 4.02% 0.68% 0.60% RedPct 0.43%

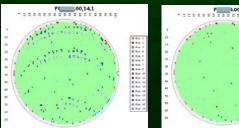
Number represents number of rejects tested
 Number represents number of touch downs

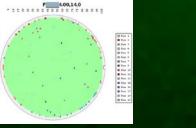


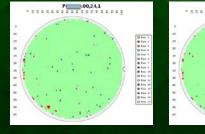
Result Comparison

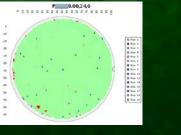
Retest Method	Traditional	Blind Shift Site	xREPROBE
Retest Yield	 Uses same site to retest Worst recovery on site to site issue 	 Recovery rate is hard to predict depending on low yield site location Resulting in continued false fails from low yielding sites 	Best recovery yield with accurate binning
Retest Time	• Standard retest TD	 Increase of TD because change site away from optimized stepping Retest time increased due to increase of TD 	 Optimized and use fewest TD to retest Calculated for each wafer so every retest is optimized

Different Layout

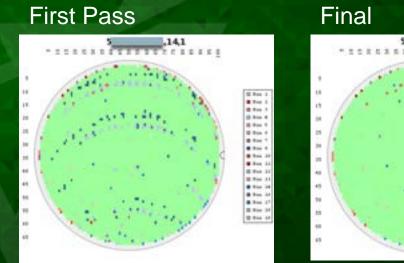

Look for shift site locations based on different layouts

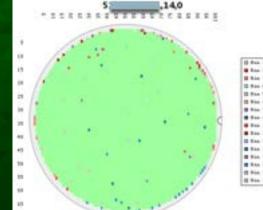



Result on 16 sites


- Ran 3 wafers to review results
- Saved 2% on test time and wafer show no sign of site to site fail pattern after retest

Wafers	First Yld	Final Yld	Total TD	Traditional Rsc TD	xREPROBE Rsc TD	Rsc % Save	Traditional Total TD	xREPROBE Total TD	Save %
AXXXX4_14	93.97%	98.04%	396	206	192	<mark>6.80%</mark>	602	588	<mark>2.33%</mark>
AXXXX9_24	97.83%	98.28%	396	61	53	<mark>13.11%</mark>	457	449	<mark>1.75%</mark>
AXXXX0_02	89.75%	98.11%	396	226	214	<mark>5.31%</mark>	622	610	1.97%
Average	93.85%	98.14%	396	164.33	153	<mark>6.89%</mark>	560.33	549	2.02%

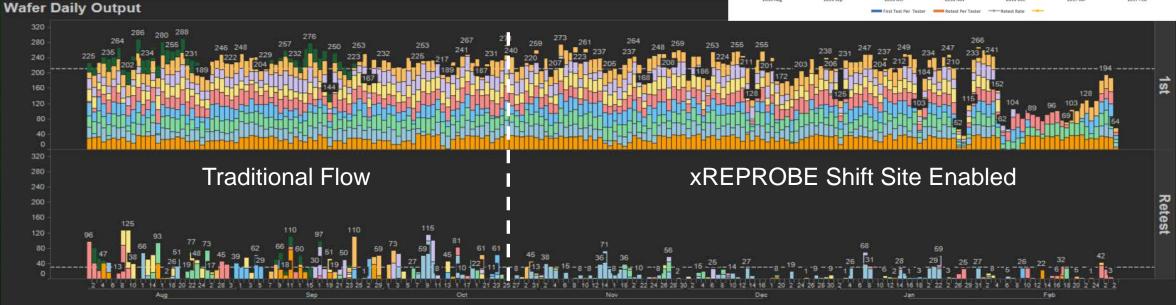


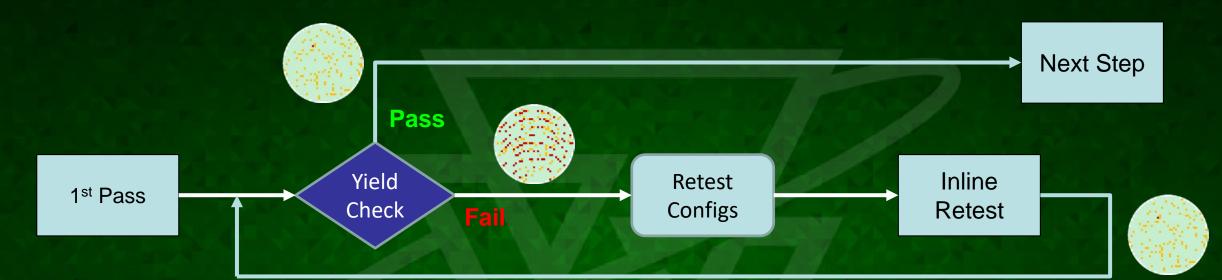

P____0.00,02,0

Effectiveness on 16 sites

- No Bad Die retested on low yield site 9 and 11
- Wafer clean and good to release with no downtime!

First Pass Yield			Final Yield			
Serial.Site Number	Bin Pass Yield	Bin Total	Serial.Site Number	Bin Pass Yield	Retested Count	
0	94.04	369	0	96.66	0	
1	97.83	368	1	98.42	14	
2	98.28	348	2	99.43	5	
3	97.95	341	3	99.11	1	
4	98.5	334	4	98.6	26	
5	98.78	328	5	96.06	106	
6	98.73	316	6	97.97	32	
7	97.33	300	7	98.38	14	
8	96.2	368	8	97.55	5	
9	76.28	371	9	97.59	0	
10	99.42	347	10	98.86	6	
11	57.77	341	11	95.63	0	
12	98.19	332	12	99.09	0	
13	99.07	323	13	99.1	12	
14	98.73	314	14	99.37	4	
15	99.67	304	15	96.52	42	
Total	93.97	5404	Total	98.06	267	




High Volume Production Result

• Wafers needing offline retest dropped from 17.4% to 5.67% after implementing shift site reprobe!!!

Inline Retest Decision

- Yield Check Rule:
 - Yield
 - Soft Bin Limit
 - Site to site Yld & SBL
 - Pattern recognition

- Retest configs:
 - Which Bins to retest
 - Retest decision:
 - Minimize test time?
 - Maximize yield?

xTEST's Portfolio

xREPROBE

 Provides auto calculated reprobing path to minimize rescreen test time, maximize recovery yields, and allow production flexibility without downtime

xSETUP

- Auto-Z to setup prober for production environment and adjust overdrive on the fly
- Auto correlation / GRR for production setup

xCLEANING

- Provides proactive control in cleaning
 - Maintain target yield
 - Provide maximum throughput by only cleaning when needed

xDATA

- Provides real time data analysis for alert , monitoring and probe decisions
- Setup data stream to any database upon request

SWTest | June 2-5,2019

Teslence Technology Co., Ltd

Thank you!!!

Pai Chang Teslence P: +886-2-27472644 E: pai.chang@teslence.com

YK Huang Teslence P: +886-2-27472644 E: yk.huang@teslence.com