

On-Chip 5G and ADAS Microstrip Patch Antennas Test Interfaces

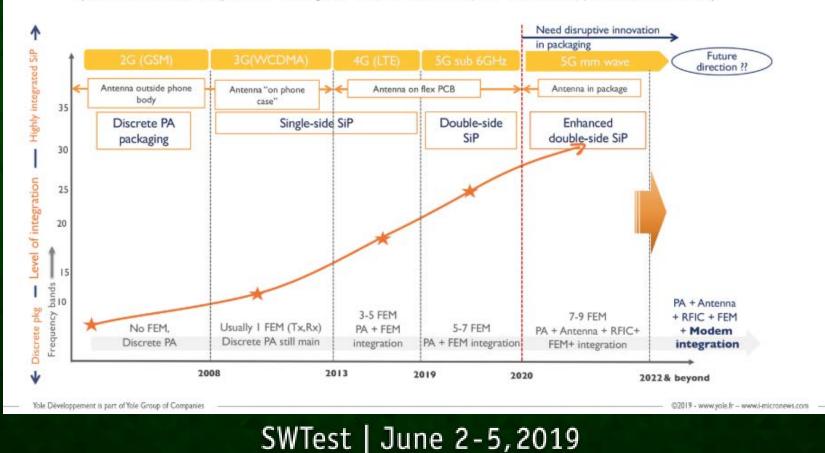
Dan Campion – Cohu, Inc. Bert Brost

June 2-5,2019

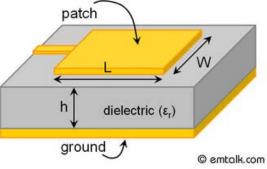
Overview

Introduction to Microstrip Patch Antennas

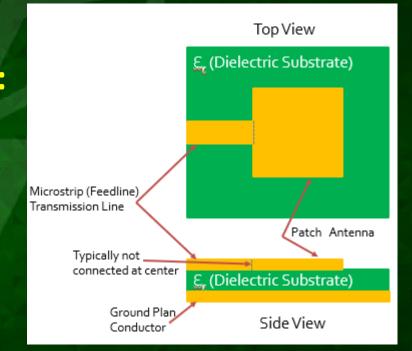
- Construction
- Geometry
- Analysis
- Examples
- Alternative Antenna Test Interface Structures
- Summary


5G RF Antenna Integration Trends

Développement

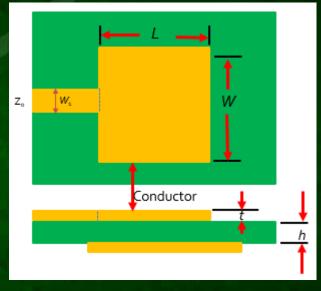

Mobile RF FEM: 2002-2022 & beyond package trends

(Source: Advanced RF System-in-Package for Cellphones 2019 report, Yole Développement, March 2019)


Microstrip Patch Antenna - Introduction

- A microstrip or patch antenna is a low-profile antenna that has a number of advantages over other antennas: it is lightweight, inexpensive, and electronics like LNA's and SSPA's can be integrated with these antennas quite easily
- Testing over-the-air devices at the die and package level effectively with microstrip patch antennas
- While the microstrip patch antenna can be a 3-D structure (wrapped around a cylinder, for example), it is usually flat and that is why patch antennas are sometimes referred to as planar antennas.

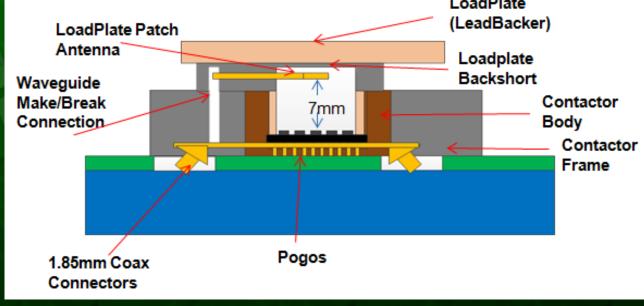
Microstrip Patch Antenna - Construction


- The original microstrip or patch antenna was patented in 1955
- Construction of the microstrip antenna includes:
 - Dielectric substrate
 - Ground plan conductor
 - Thin radiating conductor element
 - Microstrip feedline

 In a properly designed microstrip antenna the radiation intensity is in a direction normal to the radiating element, i.e., broadside

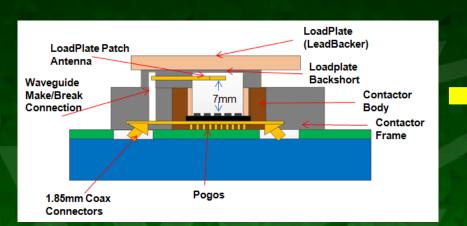
Microstrip Patch Antenna - Geometry

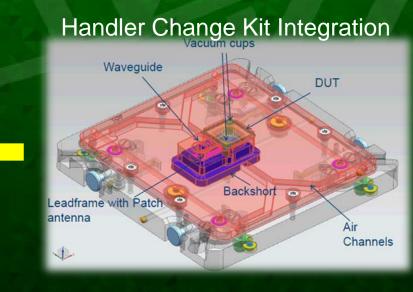
- The shape and size of an antenna is a function of its purpose
- L is the Length and it is the resonant dimension
 - L= $\lambda/2$: Typically 1/2 Wavelength
- W is the Width affects the bandwidth
 - W= 1.5 L is typical
- The position of the transmission line is relative to impedance
 - t is the thickness of the conductor
 - h is the height of the dielectric, typically should be < 0.05 λ
- The ground plan needs to be as big as the patch and is typically a little larger than the patch

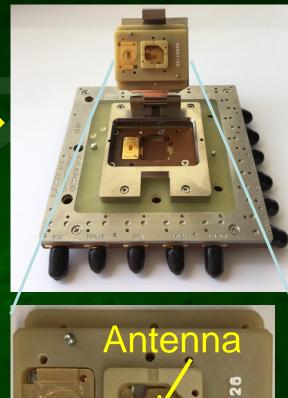

Microstrip Patch Antenna - Analysis

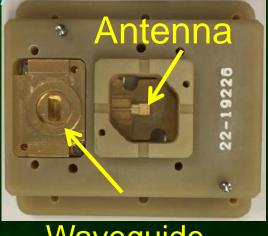
• Why does it radiate?

- We have a transmission line connected to this patch
- We have energy flowing down the transmission line to the patch
- The patch is terminated as an open circuit
- So the current has no where to go
- Consider the current voltage distribution
 - When current terminates in this open circuit situation it forces the voltage and current to come out of phase, i.e. It turns out to be 90° degrees out of phase
 - 90° degrees out of phase is actual key to the radiation of the patch and that the reflection coefficient gamma $|\Gamma|$ equals 1
 - When ever you have the magnitude of the reflection coefficient equal to one, your current and voltage are going to be 90 degree out of phase


Microstrip Patch Antenna - Backshorts

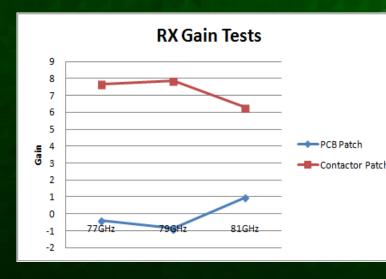

- Defines the impedance of the trace and the antenna patch
- Trace impedance = 50 ohms, Patch Antenna = 300-500 ohms
- Back short is a deflector for the radiation out of the patch and directs it upwards

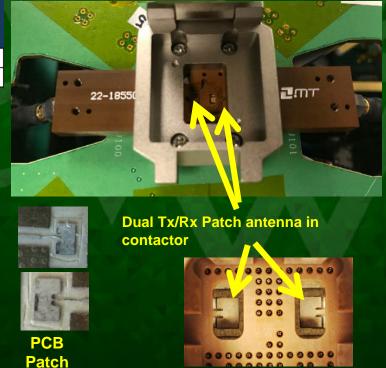

72GHz xWave OTA for Pick and Place Handler (MT2168)

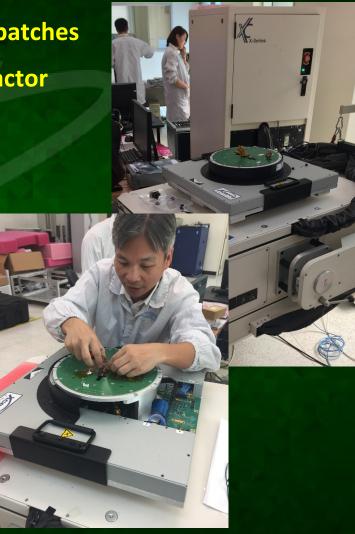

- xWave Contactor with Integrated Patch in Workpress/Leadbacker
- Broadband Performance and Wide Beamwidth
- Far-field Communication with NO IMPACT TO TEST CELL

SWTest | June 2-5,2019

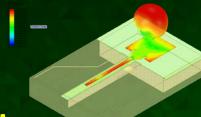
Waveguide






81GHz xWave OTA Automotive Radar Testing

- xWave Contactor with integrated Patch Antennas outperforms PCB patches
- Uses 81GHz Kestrel tester module cabled directly to patches in contactor
- Integrated with Cohu MX tester


	RX Gain Tests		
	Low Band	Mid Band	High Band
Test Fixture	77GHz	79GHz	81GHz
PCB Patch	-0.37	-0.87	0.96
Contactor Patch	7.65	7.85	6.27

Alternative Antenna Test Interface Structures

Patch

Shape	Square
Size=f(frequency)	λ/4
Bandwidth	Medium
Beam width	Medium
Gain	8-9dB
Polarization	Dual

Shape	2 arms	
Size=f(frequency)	λ/2	
Bandwidth	Medium	
Beam width	Medium	
Gain	2-5dB	
Polarization	Single	

NaveGuide	R.
hape	waveg

Shape	waveguide	
Size=f(frequency)	$\lambda/2$ to λ	
Bandwidth	Wide	
Beam width	Narrow-Wide	
Gain	5-20dB	
Polarization	Single	

Microstrip Patch Antenna Test Interface Summary

- Increased levels of antenna integration in mobile RF FEMs will continue to drive disruptive packaging technologies that will require adaptable production OTA test interface solutions
- Microstrip Patch Antennas are a good option when space is limited for integration into a handler leadbacker for testing singulated modules or into a probehead for testing WLCSP or 3DICs with Antenna on Chip
- Alternative antenna structures such as waveguide, dipole, or exotic patch designs could be driven by specific applications to address requirements such as gain, phase, or polarization